TILING SQUARES

ERWIN KALVELAGEN

ABSTRACT. Tiling squares is a difficult geometric problem. In this document
we illustrate how small instances of the problem can be solved using Mixed
Integer Programming. Larger instances, however, are beyond the reach of this
method.

1. INTRODUCTION

In this section we deal with the problem of tiling (integer) squares. We try to
fill a given n x n square with smaller k x k squares. An example is given in figure

1] (see [I).

Ficure 1. Tiling a 7 x 7 square

2. MODELING

Once we have a set of tiles that can fill the square, positioning them can be
modeled as follows. For each tile ¢ and j we need to make sure they don’t overlap.
Let’s assume the following notation: z; and y; are the (z,y) coordinates of the

Date: September 22, 2002.



2 ERWIN KALVELAGEN

lower-left corner of each tile and s; is the length of the side. At least one of the
following constraints must hold:

(1) Ty > x5+ 85

(2) x; + 5 < xj

(3) Yi 2 Y+ 5,

(4) Yi +8i < yj

The following big-M formulation can be used to implement this:
(5) x; > xj+ 55— M,

(6) i+ 8 <+ Mba,

(7) Yi > Yj +sj— Mz

(8) Yi +8i Sy;+ Moy

(9)

Z Okij <3
%

with dy; ; binary variables. Choosing M as two times the side of the total square
is large enough. Using symmetry we only need to use the equations for ¢ > j. The
complete model is:

2.0.1. Model square7.gms.

$title Tiling the 7 x 7 square
$ontext

Find the location of the tiles so that they don’t overlap.
Erwin Kalvelagen, June 2001
$offtext
sets
i ’pool of tiles’ /ilxi9/
¢ ’non-overlap directions’ /clxc4/
alias (i,j);

set 1t(i,j) ’less-then’;
1t(i,j)$(ord(i) > ord(j)) = yes;

scalar size ’size of outer square ’ /7/;

parameter s(i) ’side of tile i’ /

i1 4
(i2,i3) 3
(i4*i6) 2

1

(i7%19)
/3

parameter surf(i) ’surface of tile i’;
surf(i) = sqr(s(i));

abort$(sum(i,surf(i))<>sqr(size)) "area can not be covered";

integer variable
x(i) ’x coordinate of square i’
y(i) ’y coordinate of square i’
H
binary variable
d(c,i,j) ’overlap detection’

H
variable z;



TILING SQUARES 3

equation
overlapl(i,j) ’prevent overlap’
overlap2(i,j) ’prevent overlap’
overlap3(i,j) ’prevent overlap’
overlap4(i,j) ’prevent overlap’
countd (i, j) ’prevent overlap’
dummy

H

*
* choose M as small as possible
*

scalar M ’big-M’;

M =2 % size;

*

* one of these must hold for any (i,j)
*

overlapl(1t(i,j)).. x(i) =g= x(j) + s(j) - M * d(’cl’,i,j);
overlap2(1t(i,j)).. x(i) + s(i) =1= x(j) +M*d(Pc2,1,3);
overlap3(1t(i,j)).. y(i) =g=y(§) + s(j) - M * d(’c3%,i,3);
overlap4(1t(i,j)).. y(i) + s(i) =1= y(j) +Mxd(Pcd’,1,3);

*

* counting constraint
*

countd(1t(i,j)).. sum(c, d(c,i,j)) =1= 3;

*
* all squares within major square
*

x.10(i)=0;

x.up(i) = size - s(i);

y.lo(i)=0;

y.up(i) = size - s(i);

* dummy objective
dummy.. z=e=0;
model squares /all/;

solve squares minimizing z using mip;

A more difficult problem arises if we want to let the model determine the tiles.
As an example we consider the following sequence. Let

) b ) )

(10) h(n) = the smallest multiplicity of any tile needed

The following numbers h(n),n > 2 are listed in [2]: 4, 5, 4, 4, 4, 3, 4, 3, 4, 3, 3, 3,
3,3,3,3,3,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,22,2,2,2,22,2,2,22,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2,
9,2,2,2,2,2,2,2,2,2,2,2,2,2,2 2,22 22 2 Le. h(9) =3, which indicates

that we can form a square of 9 x 9 if tiles can appear up to three times. To prove
that we can form such a square we create a pool of tiles ¢ = 1..3(n — 1) with side
si=1(1,1,1,2,2,2,3,3,3,...,8,8,8), and introduce binary variables u; defined by:

(11) w = 1 if tile i'is used
0 otherwise.



4 ERWIN KALVELAGEN

The counting constraint on 8y ;; (9) need to be changed into something like:
(12) D kg <3+ (1—wi) + (1—uy)
k

to make sure that the non-overlap constraints are not used on any (7, 5) for which
not both tile ¢ and tile j are used. The additional constraint that is now needed is:

(13) S stus = o

As a refinement we consider to specify priorities on the integer variables. Clearly
the wu; variables should be dealt with before the other ones. Within the wu; larger
tiles should be considered first. Prioritizing = and ¢ is more difficult, but it makes
some sense to start with larger tiles.

A second improvement is to add constraints:

(14) Ok,ij 2 1 —u
(15) Ok,ij =1 —u,
which forces d;;; =1 if u; =0 or u; = 0.

The complete model is listed below:

2.0.2. Model square9.gms.

$title Tiling squares
$ontext

Find a configuration of tiling squares, with multiplicity of 3,
such that a 9 x 9 square filled by them is completely covered.

Erwin Kalvelagen, June 2001
$offtext

sets
i ’pool of tiles’ /ilxi24/
c ’non-overlap directions’ /cl*c4/

alias (i,3);

set 1t(i,j) ’less-then’;
1t(i,j)$Cord(i) > ord(j)) = yes;

scalar size ’size of outer square ’ /9/;

parameter s(i) ’side of tile i’
s(i) = ceil(ord(i)/3);
display s;

parameter surf(i) ’surface of tile i’;
surf (i) = sqr(s(i));

integer variable
x(i) ’x coordinate of tile i’
y(i) ’y coordinate of tile i’
H
binary variable
u(i) ’square i is used’
d(c,i,j) ‘’overlap detection’
H
variable z;

equation
overlapl(i,j) ’prevent overlap’




TILING SQUARES

overlap2(i,j) ’prevent overlap’
overlap3(i,j) ’prevent overlap’
overlap4(i,j) ’prevent overlap’

countd (i, j) ’prevent overlap’

area ’square must be covered’
extral(c,i,j) ’makes formulation tighter’
extra2(c,i,j) ’makes formulation tighter’

scalar M ’big-M’;

M =2 % size;

*

* one of these must hold for any (i,j)
*

overlapl(1t(i,j)).. x(i) =g= x(j) + s(§j) - M * d(Ccl’,i,j);
overlap2(1t(i,j)).. x(i) + s(i) =1= x(j) +M*d(Pc2,1,3);
overlap3(1t(i,j)).. y(i) =g=y(j) + s(j) - M * d(’c3%,i,3);
overlap4(1t(i,j)).. y(i) + s(i) =1= y(j) +M*xd(Ccd’,1,3);
*

* only if both tiles i and j are actually used

*

countd(1t(i,j)).. sum(c, d(c,i,j)) =1= 3 + (1-u(i)) + (1-u(j));

* ¥

if u(i) = 0 or u(j) = O then set d(c,i,j) to 1
* not needed but may help

extral(c,1t(i,j)).. d(c,i,j) =g= 1-u(i);
extra2(c,1t(i,j)).. d(c,i,j) =g= 1-u(j);

*
* area covered

*

area.. z =e= sum(i, u(i)*surf(i));
z.fx = sqr(size);

*

* priorities

*

u.prior(i) = card(i) - ord(i);
d.prior(c,i,j) = 2*card(i)-max(ord(i),ord(j));
x.prior(i) = 3*card(i) - ord(i);
y.prior(i) = 3*card(i) - ord(i);
*

* all tiles within major square
*

x.10(i)=0;

x.up(i) = size - s(i);
y-1lo(i)=0;

y.up(i) = size - s(i);

model squares /all/;

option iterlim=1000000,reslim=10000,o0ptcr=0;
*

* cplex option file

*

file f /cplex.opt/;

putclose f ’mipemphasis 1’;
squares.optfile=1;

squares.prioropt = 1;

option mip=cplex;

solve squares maximizing z using mip;




6 ERWIN KALVELAGEN

MIP models are quite unpredictable in performance. This is illustrated by the
following results.

Cplex Options Nodes used
mipemphasis 1 24004
mipemphasis 1, priorities 42938
mipemphasis 1, extra equations 2479
mipemphasis 1, priorities, extra equations 1955

TABLE 1. GAMS CPLEX Results

The use of priorities initially seems to deteriorate the performance of the model.
However if we add the extra constraints to the model, which in itself has a great
effect on the node count, the use of priorities seems to modestly help the solver.

The Cplex option mipemphasis 1 tells the solver that we aim for feasible solu-
tions instead of optimal solutions. Indeed in our model there is no optimization
at all: we only want the solver to find feasible solutions. In practice these models
are very difficult to solve as MIP solvers are organized around the concept of an
objective that can be used to ignore parts of the branch-and-bound tree. It is often
argued that for these type of models, techniques such as constraint programming
are more appropriate.

3. OPEN PROBLEM

I have not been able to proof yet that A(110) = 1 using the above techniques.

4. THANKS

This problem was suggested to me by Paul van der Eijk, who also came up with
the idea to use a pool of tiles and corresponding usage variables u;.

REFERENCES

1. Erich Friedma, Integer square tilings, problem of the month december 1998, http://wuw.
stetson.edu/"efriedma/mathmagic/1298.html, 1998.

2. N. J. A. Sloane, The on-line encyclopedia of integer sequences, sequence a036444, http://www.
research.att.com/ "njas/sequences/Seis.html, 2001.

GAMS DEVELOPMENT CORP., WASHINGTON DC
E-mail address: erwin@gams.com


http://www.stetson.edu/~efriedma/mathmagic/1298.html
http://www.stetson.edu/~efriedma/mathmagic/1298.html
http://www.research.att.com/~njas/sequences/Seis.html
http://www.research.att.com/~njas/sequences/Seis.html

	1. Introduction
	2. Modeling
	3. Open problem
	4. Thanks
	References

