
ON SOLVING THE ‘PROGRESSIVE PARTY PROBLEM’ AS A
MIP

ERWIN KALVELAGEN

Abstract. The ‘Progressive Party Problem’ [9] has long been considered a
problem intractable for branch-and-bound mixed integer solvers. Quite im-

pressive results have been reported with constraint programming systems for

this problem. As a result the problem has become a standard example in texts
on constraint programming. Fortunately, there has been progress in the mixed

integer programming arena: we can solve now larger and more difficult prob-

lems than ever before. Improvements in algorithmic theory, solvers, modeling
environments and computer hardware created a new situation, where reported
cases of unsolvable instances of MIP models need to re-examined, possibly with

another outcome. In this paper we will show that we can solve the ‘Progressive
Party Problem’ formulated as a large MIP problem, using standard, off-the-

shelf hardware and software. A simple myopic heuristic is also implemented

and can solve the problem in a fraction of the time.

1. Introduction

The ‘Progressive Party Problem’ was first stated by Peter Hubbard, a member of the
Sea Wych Owners Association, and of the Mathematics Department of Southamp-
ton University [12]. Consider an evening party during a yachting rally. There are
n boats and their crews. A number of boats is to be chosen as host boat: they
will host a party where other crews will visit in time slots t = 1..T of half an hour.
The total number of time periods T is given. Guest crews will go from one host
boat to another. Host boats have a given capacity: the number of guests they can
receive for a party. Guest crews can not visit the same host boat more than once
and guest crews can not meet other guest crews more than once. Find a schedule
that minimizes the number of host boats.

The following data is available: T = 6, n = 42 and the crew sizes and guest
capacities are listed in table 1.

The real-world problem had a few extra conditions: the first three boats are
designated hosts boats: the organizer and two crews consisting of parents need to
stay at their boats to be reachable. The last few boats, with zero capacity, are
virtual boats: they are “crews” consisting of children that visit parties but can not
host a party.

The problem has been reported to be unsolvable using Mixed Integer Program-
ming [9, 7]. There has been success using Constraint Programming techniques or
mixed Constraint Programming/Integer Programming systems. [9] uses the ILOG
Solver with some manual intervention, [10] can solve some instances (including
the full-blown problem) using Oz, [7] solves some smaller instances using a MLLP
(Mixed Logical-Linear Programming) solver. [5] uses Constraint Programming and

Date: November 22, 2002.

1

2 ERWIN KALVELAGEN

boat capacity crew boat capacity crew
1 6 2 22 8 5
2 8 2 23 7 4
3 12 2 24 7 4
4 12 2 25 7 2
5 12 4 26 7 2
6 12 4 27 7 4
7 12 4 28 7 5
8 10 1 29 6 2
9 10 2 30 6 4

10 10 2 31 6 2
11 10 2 32 6 2
12 10 3 33 6 2
13 8 4 34 6 2
14 8 2 35 6 2
15 8 3 36 6 2
16 12 6 37 6 4
17 8 2 38 6 5
18 8 2 39 9 7
19 8 4 40 0 2
20 8 2 41 0 3
21 8 4 42 0 4
Table 1. Crew sizes and guest capacities

Local Search for models with even more time periods and [8] uses a combined
strategy using Eclipse and Cplex.

2. Model formulation

In this section we will review some of the formulations used in earlier unsuccessful
attempts to solve the model as a mixed integer programming problem.

The first formulations are due to [9]. We introduce binary variables xi,j,t, hi

defined as follows:

xi,j,t =

{
1 if crew j visits boat i at time slot t,
0 otherwise.

(1)

hi =

{
1 if boat i is a host boat,
0 otherwise.

(2)

Let the data be denoted by wi and pi as being the crew size and the guest capacity
of boat i.

The objective is to minimize the number of host boats:

(3) min z =
∑

i

hi

Parties only take place at hosts boats, so if hi = 0 then we must have xi,j,t = 0:

xi,j,t ≤ hi ∀i 6= j, t(4)

ON SOLVING THE ‘PROGRESSIVE PARTY PROBLEM’ AS A MIP 3

The guest capacity of a host boat can not be exceeded:

gi := max{pi − wi, 0}(5) ∑
j|j 6=i

wjxi,j,t ≤ gi ∀i, t(6)

where gi is a parameter indicating the maximum number of guests a host boat can
accomodate.

Crews are not supposed to be idle at any time: they are either visiting a host
boat or they serve as host crew:

hj +
∑
i|i 6=j

xi,j,t = 1 ∀j, t(7)

The constraint that crews cannot meet more than once is split into two parts: first
a guest crew cannot visit a host crew more than once and second, between guest
crews the meeting limit is imposed.
Crews can not visit the same boat more than once:∑

t

xi,j,t ≤ 1 ∀i 6= j(8)

Guest crews can not meet more than once:∑
(i,t)|i 6=j,i 6=j′

xi,j,txi,j′,t ≤ 1 ∀j 6= j′(9)

The last equation is nonlinear and can be rewritten as a set a linear constraints.
Several suggestions can be found in the literature.

xi,j,t + xi,j′,t + xi′,j,t′ + xi′,j′,t′ ≤ 3
∀(i, i′, j, j′, t, t′)|

i 6= j, i 6= j′, i′ 6= j, i′ 6= j′,
i 6= i′, j < j′, t 6= t′

(10)

The number of equations this creates is however prohibitively large [9]. Indeed the
number is O(n4, T 2). A test program calculated the exact number for this example:
40,294,800 which is beyond the current capabilities of MIP solvers. A different
formulation (also from [9]) introduces extra binary variables yi,j,j′,t defined by

(11) yi,j,j′,t =

{
1 if crews j and j′ visit boat i at time slot t,
0 otherwise.

and the following constraints are formulated to implement this:

yi,j,j′,t ≤
xi,j,t + xi,j′,t

2
∀(i, j, j′, t)|i 6= j, i 6= j′, j < j′(12)

yi,j,j′,t ≥ xi,j,t + xi,j′,t − 1 ∀(i, j, j′, t)|i 6= j, i 6= j′, j < j′(13) ∑
(j′,t)|j<j′

yi,j,j′,t ≤ 1 ∀i, j(14)

4 ERWIN KALVELAGEN

This is a direct implementation of a multiplication of two binary variables yi,j,j′,t =
xi,j,t × xi,j′,t. A tighter formulation with more constraints would be:

yi,j,j′,t ≤ xi,j,t ∀(i, j, j′, t)|i 6= j, i 6= j′, j < j′(15)

yi,j,j′,t ≤ xi,j′,t ∀(i, j, j′, t)|i 6= j, i 6= j′, j < j′(16)

yi,j,j′,t ≥ xi,j,t + xi,j′,t − 1 ∀(i, j, j′, t)|i 6= j, i 6= j′, j < j′(17) ∑
(j′,t)|j<j′

yi,j,j′,t ≤ 1 ∀i, j(18)

As the host boat i is irrelevant in this respect, the following formulation is more
appropriate [10]. Define binary variables mj,j′,t instead of yi,j,j′,t and assume only
that mj,j′,t = 1 if crews j and j′ meet at a party at time t. If they don’t meet then,
we leave mj,j′,t unrestricted. The linking equation reduces to:

mj,j′,t ≥ xi,j,t + xi,j′,t − 1 ∀(j, j′, t)|j < j′(19) ∑
t

mj,j′,t ≤ 1 ∀j < j′(20)

Disappointing results are reported by [9]. Commercial LP/MIP solvers XPRESS
and OSL were tried unsuccessfully, even on smaller instances and relaxations. A
footnote in [10] mentions that the improved formulation using equations (19) and
(20) was tried by the authors of [9], without apparent success.

A somewhat different formulation is found in [7]. First of all, variables of the
form xi,i,t are explicitly included in the model. These variables are set to one for
host crews by including a constraint:

xi,i,t ≥ hi ∀i, t(21)

We think it is better not to include these variables at all in the model. I.e. in our
implementation, xi,j,t is only defined for i 6= j. This reduces the number of integer
variables and the above constraint is not needed.

A more distinctive feature is the usage of general integer variables vj,t defined
by:

vj,t = the host boat visited by crew j at period t ∀j, t(22)

where vi,t = i for host crews. The implication

(23) vj,t = i⇒ xi,j,t = 1

is modeled as:

xi,j,t ≥ 1− αi,j,t − βi,j,t ∀i, j, t(24)

i− vj,t ≥ 1−M(1− αi,j,t) ∀i, j, t(25)

vj,t − i ≥ 1−M(1− βi,j,t) ∀i, j, t(26)

using additional binary variables αi,j,t and βi,j,t. For this big-M formulation, M
can be chosen as M = n. An alternative formulation is:

vj,t =
∑

i

ixi,j,t ∀j, t(27)

The variablesmj,j′,t are calculated using vj,t in a similar fashion as just described.
The implication

(28) vj,t = vj′,t ⇒ mj,j′,t = 1

ON SOLVING THE ‘PROGRESSIVE PARTY PROBLEM’ AS A MIP 5

is implemented as:

hj + hj′ +mj,j′,t ≥ 1− φj,j′,t − ψj,j′,t ∀t, j < j′(29)

vj′,t − vj,t ≥ 1−M(1− φj,j′,t) ∀t, j < j′(30)

vj,t − vj′,t ≥ 1−M(1− ψj,j′,t) ∀t, j < j′(31)

using additional binary variables φj,j′,t and ψj,j′,t. Again M can be chosen as
M = n. It is observed that vj,t can be declared as continuous variables as they will
automatically assume integral values.

The authors [7] could not solve the full instance of this formulation using the
Cplex solver. For n = 10, computations were terminated after 20000 nodes.

3. Solving the model

The basic model we will use is discussed in the first part of previous section:

min z =
∑

hi

xi,j,t ≤ hi∑
j

wjxi,j,t ≤ gi

hj +
∑

i

xi,j,t = 1∑
t

xi,j,t ≤ 1

mj,j′,t ≥ xi,j,t + xi,j′,t − 1∑
t

mj,j′,t ≤ 1

The model from [7] with its big-M formulations and general integer variables,
looked less attractive as a starting point.

A few changes have been applied to this model.
The variables mj,j′,t can be relaxed to continuous variables, as they assume

integer values automatically, that is at least the ones that are restricted. The
unrestricted ones being possibly fractional are not an issue.

We fixed the designated hosts boats:

hi = 1 i = 1, 2, 3(32)

The virtual boats can be fixed to being guest boats:

hi = 0 i = 40, 41, 42(33)

This can be slightly generalized: any boat with a net guest capacity smaller than
the smallest crew size will never be a hoat boat. I.e.

w̄ := min
i
wi(34)

hi = 0 i|gi < w̄(35)

It can be argued that there is a bound

(36) z ≥ 13

6 ERWIN KALVELAGEN

as we need 13 host boats just to get a valid schedule for a one period party. This
can easily be verified just by running the model for T = 1. The resulting model is:

min z =
∑

hi

xi,j ≤ hi∑
j

wjxi,j ≤ gi

hj +
∑

i

xi,j = 1

In fact, as mentioned by [3] quite a simplified model can be used to obtain this
bound. A simplified version of that is:

min z =
∑

hi∑
i

wi ≤
∑

i

pihi

This model gives z∗ = 13 implying the bound on z for the full-blown model. The
same bound can be derived by sorting the boats on capacity and choosing the first
k boats that can accomodate all crews, which yields k = 13.

Another observation is that we replace equation (6) by:∑
j|j 6=i

wjxi,j,t ≤ pihi ∀i, t(37)

which may be tighter if hi is still fractional. Similarly, we can replace equation (8)
by: ∑

t

xi,j,t ≤ hi ∀i 6= j(38)

As we were interested in finding a solution with z = 13 we fixed the objective
variable to this value and told Cplex to place emphasis on feasibility. In addition
we set branching priorities as follows:

• First pay attention to hi, then worry about xi,j,t

• First handle large crews, then do smaller crews
Surprisingly the primal simplex much faster for this model compared to the

default dual simplex method, not only for the root node but also for the subsuquent
nodes.

Using these options we were able to solve the model. The results are reproduced
in table 2.

The results are running GAMS and GAMS/CPLEX 7.0 on a PC with a 1.2
GHz AMD Athlon processor, 512 MB Ram running Linux. Interestingly, the same
model solves even faster on Windows ME on the same machine: 1375 seconds,
107541 iterations, 197 nodes. The complete model is listed in Appendix A.

4. A time staged heuristic

[9] mentions how they could find a solution using the ILOG Solver Constraint
Programming System. They first solve the system for t = 1, then fixed variables
and solved for t = 2 etc. Interestingly they did not try the same scheme using a
MIP solver. In this section we will show results based on the following heuristic:

ON SOLVING THE ‘PROGRESSIVE PARTY PROBLEM’ AS A MIP 7

number of equations 220060
number of variables 15541

number of binary variables 10368
number of nonzero elements 678997

gams model compilation time 0 s.
gams model generation time 4 s.

cplex total solution time 9054 s.
cplex relaxed lp solution time 165 s.

cplex total iterations 777860
number of nodes 507

Table 2. Result for the full model

first solve for t = 1, then fix hi and xi,j,1. Then solve for t = 1, 2. Now we can
fix xi,j,2. Solve for t = 1, 2, 3 etc. Note that we can not fix the variables mj,j′,t as
they are partially left undefined. As was done in [9], we were even able to find a
solution for a seventh time period without increasing the number of host boats.

The complete model that implements this, is reproduced in Appendix B. The
basic results are given in 3.

time disc. gen. sol.
stage rows cols nz vars obj time time

1 38830 2620 114130 1758 13 0.73 1.62
2 73270 3445 146371 1722 13 1.17 1.72
3 107710 4306 181672 1722 13 1.58 2.35
4 142150 5167 216973 1722 13 2.10 3.00
5 176590 6028 252274 1722 13 2.52 3.84
6 211030 6889 287575 1722 13 2.96 4.39

(7) 245470 7750 322876 1722 13 3.42 5.50
Table 3. Result for the time staged model

rows number of equations
cols number of variables
nz number of nonzero elements
disc. vars number of discrete variables
obj. optimal value of objective variable
gen. time gams generation time (seconds)
sol. time cplex solution time (seconds)
Table 4. Explanation of headers in table 3

The models grow in size but are very easy to solve. The total turn around time
is less than a minute.

As the optimal objective solution for stage 1 through 7 remains at 13, we know
this is an optimal solution. However, this strategy is not guaranteed to work: we

8 ERWIN KALVELAGEN

were lucky that fixing the earlier stages did not cause the objective to deteriorate
or that the subproblems became infeasible.

When solving complicated models, the application of a cheap heuristic before
solving the complete model is an useful and widely adopted strategy. Many com-
mercial MIP solver apply heuristics to find good integer solutions before starting
the real branch-and-bound algorithm. This strategy can also be applied on a mod-
eling level: first we can try to find a solution of the problem by trying a few cheap
heuristics, and if that fails we can try to solve the full-scale MIP model. Such
strategies can produce much more reliable problem solving environments in practi-
cal settings, especially when finding good solutions quickly is more important than
delivering proven global solutions.

5. Discussion

The fact that we can solve models of this size on our desktops can be attributed to
the following factors. First, there has been tremendous improvements in hardware.
The desktop PC that was used to run this model is quite a garden variety machine.
However, it offers unprecedented computing power. [4] mentions that a 1.2 GHz
AMD Athlon can outperform a Cray C90 (16 procs, 4.2 ns), a mighty machine
just a decade ago, yielding 558 Mflop/s compared to 479 Mflop/s for the C90 on
a standard Linpack benchmark. (This comparison even favors the Cray somewhat
as that machine was designed to do dense linear algebra very well). This is truly
amazing, especially considering that these PC’s, most of the time, are sitting idle
or running mail readers, web browsers or word processing software.

Figure 1. Cray C90 (courtesy NASA/Ames Research Center)

Another important reason being able to solve this model is the huge progress
progress that has been made in the MIP solvers. Both the capabilities in solving

ON SOLVING THE ‘PROGRESSIVE PARTY PROBLEM’ AS A MIP 9

large LP’s reliably and the incorporation of new theoretic results from research on
integer programming have lead to new classes of models that can now be solved
routinely. A good exposé on this aspect can be found in [2]. As an example we
mention the presolver, a feature that nowadays is a standard part of most commer-
cial solvers. For our large model, the performance of the presolver is summarized
in table 5. The resulting model is still very large, but the presolver is surely a very
good job on this model.

before after
rows 220060 125085
cols 15541 11928
nz 678997 396392

Table 5. Model size reduction by the presolver

The last important tool to use is a modeling system like AMPL[1] or GAMS[6].
The use of a modeling system almost invites the user to experiment with alter-
native formulations. Especially for very large models, modeling systems provide
a concise representation that can be understood in full. Opposed to (computer)
programming, where large problems can be decomposed into smaller ones in a nat-
ural fashion (e.g. by stepwise refinement[13] etc.) modeling is characterized by
“simultaneous equations”. A compact notation is then called for to maintain a
proper “helicopter view” on the model. Integer models especially are very sensitive
to different formulations. Often a different formulation can make the difference be-
tween being able to solve a model or not. This requires easy experimentation, with
running different variations of a model. Modeling systems are very suited in such
an environment, as there is virtual no barrier between the idea of a reformulation
and its implementation. Often it is a question of minutes after the inception of a
possible new idea to try out, and the actual run being started. Unfortunately with
MIP models, reformulations are very dependent on the particular model and data.
For this big model, that means that, although you can try out new ideas on smaller
instances, ultimately one will need to evaluate reformulations on the real full-blown
model. From the results in table 2 we see that the overhead of using a modeling
system is quite small, even compared to solving the relaxed LP. For large models
we see that generation times are going up linearly with the number of nonzero ele-
ments, while solution times certainly don’t. When writing little algorithms like in
the time staged model, the overhead can be larger due to regeneration of similar
models, a property GAMS currently does not take advantage of.

References

[1] http://www.ampl.com

[2] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, R. Wunderling, MIP: Theory and Practice
Closing the Gap, System Modelling and Optimization: Methods, Theory and Applications,

Kluwer, The Netherlands, M. J. D. Powell and S. Scholtes, editors, pp. 19-49, 2000.
[3] S. C. Brailsford, P. M. Hubbard, B. M. Smith and H. P. Williams, Organizing a Social Event

– A Difficult Problem of Combinatorial Optimization, Computers and Operations Research,

23, pp. 845–856, 1996.
[4] J. J. Dongarra, Performance of Various Computers Using Standard Linear Equations Soft-

ware, Report CS-89-85, University of Tennessee, january 2001.

10 ERWIN KALVELAGEN

[5] P. Galinier and J.K. Hao, Solving the progressive party problem by local search, Meta-

heuristics: Advances and Trends in Local Search Paradigms for Optimization, S. Voss, S.

Martello, I.H. Osman and C. Roucairol (Eds.), Kluwer Academic Publishers, Chapter 29, pp.
418–432, 1998.

[6] http://www.gams.com

[7] J. N. Hooker and M. H. Osorio, Mixed Logical-Linear Programming, Discrete Applied Math-
ematics, 96-97, pp. 395–442, 1999.

[8] Rodosek R., Wallace M. G. and Hajian M. T., A New Approach to Integrating Mixed Integer

Programming with Constraint Logic Programming, in Annals of Operational Research, Recent
Advances in Combinatorial Optimization, Vol 86, pp. 63–87, 1999.

[9] B. M. Smith, S. C. Brailsford, P. M. Hubbard and H. P. Williams, The Progressive Party

Problem: Integer Linear Programming and Constraint Programming Compared, Report 95.8,
University of Leeds, School of Computer Studies, March 1995. (Also appeared in Proceedings

of First International Conference on Principles and Practice of Constraint Programming
(CP’95), Springer Verlag LNCS 976, pp. 36–52, Cassis, September 1995 and in Constraints,

vol. 1, pp. 119–138, 1996).

[10] J. P. Walser, Solving Linear Pseudo-Boolean Constraint Problems with Local Search, Pro-
ceedings of the 14th National Conference on Artificial Intelligence, AAAI-97, Providence, RI,
1997.

[11] J. P. Walser, Domain-Independent Local Search for Linear Integer Optimization, Ph.D. dis-
sertation, Universität des Saarlandes, 1998.

[12] J. P. Walser, http://www.ps.uni-sb.de/∼walser/ppp/ppp.html.
[13] N. Wirth, Program Development by Stepwise Refinement, CACM, v. 14, n. 4, April 1971, pp.

221–227.

Appendix A: Full model

$title Progressive Party Problem -- Full blown model
$ontext

This model solves the 6 period model.

Erwin Kalvelagen, june 2001

$offtext

set i ’boat or crew number’ /b1*b42/;

parameter capacity(i) ’max number of guests’ /
b1 6, b2 8, b3 12, b4 12, b5 12, b6 12, b7 12, b8 10,
b9 10, b10 10, b11 10, b12 10, b13 8, b14 8, b15 8, b16 12,
b17 8, b18 8, b19 8, b20 8, b21 8, b22 8, b23 7, b24 7,
b25 7, b26 7, b27 7, b28 7, b29 6, b30 6, b31 6, b32 6,
b33 6, b34 6, b35 6, b36 6, b37 6, b38 6, b39 9, b40 0,
b41 0, b42 0

/;

parameter crew(i) ’crew size’ /
b1 2, b2 2, b3 2, b4 2, b5 4, b6 4, b7 4, b8 1,
b9 2, b10 2, b11 2, b12 3, b13 4, b14 2, b15 3, b16 6,
b17 2, b18 2, b19 4, b20 2, b21 4, b22 5, b23 4, b24 4,
b25 2, b26 2, b27 4, b28 5, b29 2, b30 4, b31 2, b32 2,
b33 2, b34 2, b35 2, b36 2, b37 4, b38 5, b39 7, b40 2,
b41 3, b42 4

/;

parameter guest_cap(i) ’guest_capacity’;
guest_cap(i) = max(capacity(i)-crew(i),0);

set t ’time slot’ /t1*t6/;

alias (i,j,ii,jj);
alias (t,tt);

set nd(i,j) ’off-diagonal’;
nd(i,j)$(ord(i)<>ord(j)) = yes;

ON SOLVING THE ‘PROGRESSIVE PARTY PROBLEM’ AS A MIP 11

set lti(i,j) ’less-than’;
lti(i,j)$(ord(i)<ord(j)) = yes;

variables
nh ’number of host boats’
x(i,j,t) ’crew j visits party i at time slot t’
h(i) ’boat i is a host boat’
meet(j,jj,t) ’crews j and jj meet at time t’

;
binary variables x,h;

equations
obj ’objective’
host(i,j,t) ’parties only on host boats’
cap(i,t) ’capacity constraint’
crewhost(j,t) ’crew is a host or is hosted (no idle crews)’
visitonce(i,j) ’crew can only visit a boat once’
link(i,j,jj,t) ’calculates meet(j,jj)’
meetonce(j,jj) ’any pair of guest crews can meet only once’

;

*
* minimize number of host boats
*
obj.. nh =e= sum(i, h(i));

*
* there are only parties on host boats
*
host(nd(i,j),t).. x(i,j,t) =l= h(i);

*
* max number of guest that a host boat can handle
*
cap(i,t).. sum(nd(i,j), crew(j)*x(i,j,t)) =l= guest_cap(i)*h(i);

*
* no idle crews: a crew is either hosting a party, or visiting
* a party
*
crewhost(j,t).. h(j) + sum(nd(i,j), x(i,j,t)) =e= 1;

*
* max one visit to each host boat
*
visitonce(nd(i,j)).. sum(t, x(i,j,t)) =l= h(i);

*
* guest crews can meet only once
* with aid of extra binary variables
*
meet.lo(lti(j,jj), t) = 0;
meet.up(lti(j,jj), t) = 1;
link(i,lti(j,jj),t)$(nd(i,j) and nd(i,jj))..

meet(j,jj,t) =g= x(i,j,t) + x(i,jj,t) - 1;

meetonce(lti(j,jj)).. sum(t, meet(j,jj,t)) =l= 1;

*
* some boats are designated host boats
*
set must_be_host(i) /b1,b2,b3/;
h.fx(must_be_host) = 1;

*
* some boats are designated guest boats
* (the virtual boats).
*
set must_be_guest(i) /b40,b41,b42/;
h.fx(must_be_guest) = 0;

12 ERWIN KALVELAGEN

*
* make sure boats with very limited guest capacity are never
* selected as host boats
* (this will include the virtual boats, so what)
*
scalar mincrew ’smallest crew’;
mincrew = smin(j, crew(j));
h.fx(i)$(guest_cap(i) < mincrew) = 0;

*
* it can be shows that 12 host boats is not enough
* to handle even a single period. Try to find a schedule
* with 13 boats.
*
nh.fx = 13;

model m /all/;

*
* priorities
* ----------
* first branch on h(i), sorted on crew size
* then branch on x(i,j,t), sorted on crew size
*
parameter mx ’max crew size’;
mx = smax(i,crew(i));
h.prior(i) = mx - crew(i);
x.prior(i,j,t) = mx + sqr(card(i)) - ord(i) - ord(j);
m.prioropt=1;

* solve to optimality
option optcr=0;

* increase iteration and time limit
option iterlim=1000000;
option reslim=100000;

option mip=cplex;

*
* cplex option file
*
file f /cplex.opt/;
putclose f ’heurfreq -1’/’mipinterval 1’/’startalg 1’/’subalg 1’/’mipemphasis 1’/;
m.optfile=1;

solve m using mip minimizing nh;

*
* sanity check
*
parameter meetcount(j,jj);
meetcount(nd(j,jj)) = sum((i,t), x.l(i,j,t)*x.l(i,jj,t));
abort$sum((j,jj)$(meetcount(j,jj) > 1.5),1) "meeting condition is not met";

Appendix B: Time staged model

$title Progressive Party Problem -- Time Staged Approach
$ontext

This model find a 7 period schedule using a time staged
heuristic.

Erwin Kalvelagen, 2001

$offtext

set i ’boat or crew number’ /b1*b42/;

ON SOLVING THE ‘PROGRESSIVE PARTY PROBLEM’ AS A MIP 13

parameter capacity(i) ’max number of guests’ /
b1 6, b2 8, b3 12, b4 12, b5 12, b6 12, b7 12, b8 10,
b9 10, b10 10, b11 10, b12 10, b13 8, b14 8, b15 8, b16 12,
b17 8, b18 8, b19 8, b20 8, b21 8, b22 8, b23 7, b24 7,
b25 7, b26 7, b27 7, b28 7, b29 6, b30 6, b31 6, b32 6,
b33 6, b34 6, b35 6, b36 6, b37 6, b38 6, b39 9, b40 0,
b41 0, b42 0

/;

parameter crew(i) ’crew size’ /
b1 2, b2 2, b3 2, b4 2, b5 4, b6 4, b7 4, b8 1,
b9 2, b10 2, b11 2, b12 3, b13 4, b14 2, b15 3, b16 6,
b17 2, b18 2, b19 4, b20 2, b21 4, b22 5, b23 4, b24 4,
b25 2, b26 2, b27 4, b28 5, b29 2, b30 4, b31 2, b32 2,
b33 2, b34 2, b35 2, b36 2, b37 4, b38 5, b39 7, b40 2,
b41 3, b42 4

/;

parameter guest_cap(i) ’guest_capacity’;
guest_cap(i) = max(capacity(i)-crew(i),0);

set t ’time slot’ /t1*t7/;

alias (i,j,ii,jj);

set nd(i,j) ’off-diagonal’;
nd(i,j)$(ord(i)<>ord(j)) = yes;

set lti(i,j) ’less-than’;
lti(i,j)$(ord(i)<ord(j)) = yes;

variables
nh ’number of host boats’
x(i,j,t) ’crew j visits party i at time slot t’
h(i) ’boat i is a host boat’
meet(j,jj,t) ’crews j and jj meet at time t’

;
binary variables x,h;

equations
obj ’objective’
host(i,j,t) ’parties only on host boats’
cap(i,t) ’capacity constraint’
crewhost(j,t) ’crew is a host or is hosted (no idle crews)’
visitonce(i,j) ’crew can only visit a boat once’
meetonce(j,jj) ’any pair of guest crews can meet only once’
link(i,j,jj,t) ’calculates meet(j,jj)’

;

set td(t) ’dynamic set’;

*
* minimize number of host boats
*
obj.. nh =e= sum(i, h(i));

*
* there are only parties on host boats
*
host(nd(i,j),td).. x(i,j,td) =l= h(i);

*
* max number of guest that a host boat can handle
*
cap(i,td).. sum(nd(i,j), crew(j)*x(i,j,td)) =l= guest_cap(i)*h(i);

*
* no idle crews: a crew is either hosting a party, or visiting
* a party
*
crewhost(j,td).. h(j) + sum(nd(i,j), x(i,j,td)) =e= 1;

14 ERWIN KALVELAGEN

*
* max one visit to each host boat
*
visitonce(nd(i,j)).. sum(td, x(i,j,td)) =l= h(i);

*
* guest crews can meet only once
* with aid of extra binary variables
*
meet.lo(lti(j,jj), t) = 0;
meet.up(lti(j,jj), t) = 1;
link(i,lti(j,jj),td)$(nd(i,j) and nd(i,jj))..

meet(j,jj,td) =g= x(i,j,td) + x(i,jj,td) - 1;

meetonce(lti(j,jj)).. sum(td, meet(j,jj,td)) =l= 1;

*
* some boats are designated host boats
*
set must_be_host(i) /b1,b2,b3/;
h.fx(must_be_host) = 1;

*
* some boats are designated guest boats
* (the virtual boats).
*
set must_be_guest(i) /b40,b41,b42/;
h.fx(must_be_guest) = 0;

*
* make sure boats with very limited guest capacity are never
* selected as host boats
* (this will include the virtual boats, so what)
*
scalar mincrew ’smallest crew’;
mincrew = smin(j, crew(j));
h.fx(i)$(guest_cap(i) < mincrew) = 0;

*
* it can be shows that 12 host boats is not enough
* to handle even a single period
*
nh.lo = 13;

model m /obj, host, cap, crewhost, visitonce, link, meetonce/;

* solve to optimality
option optcr=0;

* don’t generate fixed variables
m.holdfixed = 1;

* keep listing file small
option limrow = 0;
option limcol = 0;
m.solprint = 0;

option mip=cplex;

loop(t,

*
* add new member to dynamic set
*

td(t) = yes;

solve m using mip minimizing nh;
abort$(m.modelstat <> 1) "model became infeasible";

*
* fix variables for this time stage

ON SOLVING THE ‘PROGRESSIVE PARTY PROBLEM’ AS A MIP 15

*
h.fx(i)$(ord(t)=1) = h.l(i);
x.fx(i,j,t) = x.l(i,j,t);

);

display h.l,x.l;

*
* sanity check
*
parameter meetcount(j,jj);
meetcount(nd(j,jj)) = sum((i,t), x.l(i,j,t)*x.l(i,jj,t));
abort$sum((j,jj)$(meetcount(j,jj) > 1.5),1) "meeting condition is not met";

GAMS Development Corp., Washington DC

E-mail address: erwin@gams.com

	1. Introduction
	2. Model formulation
	3. Solving the model
	4. A time staged heuristic
	5. Discussion
	References
	Appendix A: Full model
	Appendix B: Time staged model

