GAMS/ORAQUEUE: A queueing batch system for GAMS jobs in an

Oracle environment

ERWIN KALVELAGEN*
August 16, 2002

1 Introduction

This document describes a package for queueing GAMS jobs in an Oracle database environment. Jobs are
executed when resources are available, and are otherwise queued for later execution. To demonstrate and test
the concept in an actual application, we implemented a Web-based job submission tool. All the software is
implemented in Oracle using PL/SQL and Java stored procedures.

The complete sources are available from the author at no charge. It is noted however that to install and
customize the system to your particular needs will require a reasonable knowledge of Oracle, Oracle Application
Server and PL/SQL.

2 Design
2.1 Polling

The conceptually simplest way to implement a queueing system is to use a simple queue table containing
waiting jobs, and an external program that periodically checks this table to see if there are jobs to run. The
external program is preferably running as a background process. On UNIX systems this means a daemon and
on Windows NT systems such a background process can be implemented as an NT Service.

A polling loop design has a number of drawbacks. First, a polling system will waste resources (database
connections, query processing) as it will query the database even if there are no jobs waiting. It is not always
obvious what the polling interval should be. Choosing a resolution that is too fine may cause degradation in
system performance while a resolution that is too coarse will cause longer than needed job turn around times
due to extra latency in the system. This also causes the system to be idle (i.e. not running GAMS jobs) while
in fact there is capacity to run jobs.

Using an external program (daemon or NT service) causes additional complications. A decent implementa-
tion of a daemon or service is not a trivial task [6, 7, 24]. In addition the task to manage both a database and a
separate program gives extra complexity. Issues like starting and stopping the daemon, error logging, security,
permissions and system documentation can make this solution less attractive in a production environment. An
alternative is to implement the polling loop not outside the database in an external background process but
inside the database. Modern databases such as Oracle provide excellent programming environments including
PL/SQL [16], a language loosely based on Ada, and Java [13, 15]. Other database systems such as SQL Server
from Microsoft and DB2 from IBM provide similar facilities: SQL Server uses Transact SQL and DB2 uses
typically SQL and Java. One problem is that relational databases are by nature event driven: things happen
when a stored procedure is called or a trigger is launched. Some databases have facilities to run periodically a
task, such as an alert, but these tasks are to be run every hour, day or week, i.e. at a much coarser interval
than our polling process would require.

2.2 Event driven approach

An alternative is not to poll, but to use an event driven state machine. In this case we only do management
tasks when the state of the system is changed due to an event. An event can be a submission of a new job, or

*GAMS Development Corporation, Washington D.C.

the finishing of a running job. This method can be implemented inside the database using stored procedures
and triggers. The complexity of such a system is somewhat larger, but it has the advantage that only processing
power is needed when actually processing needs to be performed. In addition, there is no idling when jobs are
available to be executed.

The state of the queue can be described with two integers:

State variables:
nJobsWaiting { number of jobs in the queue to be executed }
nJobsRunning { number of jobs currently running }
There are two parameters that indicate the capacity of the system:
Parameters:

nMaxJobsWaiting { maximum number of jobs waiting to be executed }
nMaxJobsRunning { maximum number of jobs that can be executing at the same time }

Le. we have the following allowable ranges:

nJobsWaiting = 0, .., nMaxJobsW aiting
nJobsRunning = 0, ..,nMaxJobs Running

The following constraints can be applied to the system:

nJobs Running < nMaxJobsRunning = nJobsW aiting = 0

nJobsWaiting > 0 = nJobsRunning = nMax.Jobs Running
Le. if we have capacity available to run extra jobs, the waiting queue must be empty (otherwise we could have
started executing a waiting job), and if there are jobs in the waiting queue, then the execution system is working
at full capacity.

The following events can be defined:

Events:

IncomingJob { a new job is submitted by a user }

FinishingJob { a job finished executing }

KillingJob { a job needs to be removed from the system }
The initial state of the system is:

Initial state:
nJobsWaiting = 0
nJobsRunning = 0
There is no final state in this system. The following state transitions in response to events can be defined
IncomingJob:
if nJobsRunning < nMaxJobsRunning then
nJobsRunning := nJobsRunning + 1 { execute job }
else if nJobsWaiting < nMaxJobsW aiting then
nJobsWaiting := nJobsWaiting + 1 { put job in queue }
else
error(System full)
end if
FinishingJob:
if nJobsWaiting > 0 then
nJobsWaiting := nJobsWaiting — 1 { execute waiting job }
else
nJobsRunning := nJobsRunning — 1 { no waiting jobs }
end if
KillingJob:
if JobID € JobsW aiting then
nJobsWaiting := nJobsWaiting — 1 { remove from queue }
else if JobID € JobsRunning then
raise event F'inishing.Job
else
error(Job not found)
end if

3 Implementation

3.1 Oracle

A prototype implementation has been built using Oracle 9i on Windows 2000. Most of the functionality is
implemented using PL/SQL stored procedures, conveniently packages as a socalled package.

We have followed more or less the advice of [4]: if possible use SQL, then try to do it in PL/SQL, if this
turns out impossible use Java and as a last resort use external DLL’s written in C. Most of the system is coded
in PL/SQL, with the GAMS execution part being written in Java. We did not have to use external DLL’s.

Oracle 9i is a large software system and in the following discussion we will cover quite some ground. If you
are very unfamiliar with relational database systems in general and Oracle in particular, you may want to skip
reading this section.

3.2 Background processing

To keep the system responsive we needed a way to process GAMS models in the background. L.e. the calling
procedure should return before the job is finished. Our initial thought was that Java could provide us with
the needed multi-threading functionality to implement this. Unfortunately, the Java virtual machine (JVM)
inside Oracle has a somewhat simpler threading model, causing this approach not to work. We therefore used
the PL/SQL package DBMS_JOB [19] to implement background processing. DBMS_JOB is normally used to
schedule jobs at a later time. However, in our implementation, we don’t use the scheduling part, but only use
the background processing feature of DBMS_JOB. Another possible way to implement this system would be
the use of the Advanced Queueing mechanism in Oracle 9i [11, 19]. We have not investigated this possibility
further.

The use of DBMS_JOB requires proper configuration of the Oracle Server: a number of background processes
need to be specified.

3.3 Running external programs

As some stage in the process we need to run GAMS from withing Oracle. This means calling an external program.
Before Oracle 8, the usual way to implement such a calling mechanism was to use the package DBMS_PIPE.
This requires a reasonable amount of programming: an external listener program needs to be written that can
exchange data through a pipe. With Oracle 8 two new ways of talking to the external world were introduced:
the possibility to call external Dynamic Link Libraries (DLL’s) or shared objects as they are called in the
UNIX word, and using Java’s ezec() method from the Runtime class. We have used the Java approach, as this
gives us more security and protection against programming mistakes (Java stored procedures live in a protected
“sandbox”, so that they cannot harm the database server), and gives us platform independence (sometimes
somewhat optimistically described as write-once-run-anywhere).

The use of ezxec() requires additional privileges, as this is a potential harmful operation.

The current implementation does not allow to kill a running job. Of course it is possible to kill a job
externally using the Windows NT Task Manager. In addition there is no functionality te set limits on the job,
like maximum memory usage and maximum CPU time. It would be possible to add this by writing a wrapper
for gams. exe that enforces these restrictions. On UNIX systems this is somwhat simpler: several limits can be
specified for a shell (e.g. the c-shell uses 1imit and the Korn and bash shell has ulimit). Example:

[erwin@webster ~]$ limit
cputime unlimited
filesize unlimited
datasize unlimited
stacksize 8192 kbytes
coredumpsize unlimited
memoryuse unlimited
descriptors 1024
memorylocked unlimited
maxproc 1023
openfiles 1024
[erwin@webster ~1$

3.4 Platform independence

The whole system is virtually platform independent. All PL/SQL packages, SQL scripts and Java classes can
be compiled and executed on any machine on which Oracle 9i is installed. One exception comes to mind: the
path where GAMS is installed is installation dependent, and this string will need to be changed accordingly
during installation time of the PL/SQL packages.

3.5 The QADMIN table
The queueing system is built around the table QADMIN. Here is the description:

SQL> describe gadmin

Name Null? Type

JOBID NOT NULL VARCHAR2(28)
JOBSTATUS CHAR(1)
USERNAME VARCHAR2(80)
PASSWORD VARCHAR2 (80)
LONGDESCRIPTION VARCHAR2 (255)
SHORTDESCRIPTION VARCHAR2(80)
JOBPRIORITY NUMBER (38)
JOBCREATIONDATE TIMESTAMP (6)
JOBCOMPLETIONDATE TIMESTAMP (6)
EMAIL VARCHAR2(80)
LOG BLOB
LISTING BLOB

FILE1 BLOB

FILE2 BLOB

FILE3 BLOB

FILE4 BLOB

FILES BLOB
FILENAME1 VARCHAR2 (80)
FILENAME2 VARCHAR2 (80)
FILENAME3 VARCHAR2(80)
FILENAME4 VARCHAR2(80)
FILENAMES VARCHAR2(80)
EXECERROR VARCHAR2 (255)
SQL>

Here follows a short description of the columns:

jobid This is a unique identifier for each job. To make sure this really unique we use an Oracle sequence to
generate this id, i.e. the user does not have to provide this, but instead it is generated in the application
code. The jobid is passed on from one PL/SQL procedure to another to identify the job in question.

jobstatus A letter indicating the status of the job. Most commonly you will see "W’ for waiting jobs, 'R’ for
running jobs and 'F’ for finished jobs. Occasionally one could see ’S’ for a job that is being submitted for
background processing (it should shortly change into 'R’), or "E’ for a job that could not be executed due
to an error occurring in the Java class that executes GAMS jobs.

username Name of the user. Together with the password this is used to search for jobs submitted by a certain
user.

password Password of the user. Note that this is not encrypted, so this is relatively unsecure. It is mainly
used to find jobs that belong to a certain user: a user/password combination minimizes the chance that
two users use the same indentification.

shortdescription Short description of the job. This can be used to identify the job from a list of jobs submitted.
longdescription This longer description is used to tell more about the job.

jobpriority The job priority is used in scheduling jobs. Jobs with higher priority will be executed before jobs
with a lower priority. Otherwise the submission date is used: older jobs are executed before newer ones.

jobcreationdate The timestamp indicating when the job was inserted in the QDAMIN table.

jobcompletiondate The timestamp indication when the job was finished executing. If the job is not finished
yet, this field is NULL.

email This is the email address that is used to notify the user when a job is completed. If this field is NULL
or contains an empty string, sending the mail is skipped.

log BLOB containing the GAMS log file. This field is NULL is the job has not finished. The log file is what is
normally sent to the screen.

listing BLOB containing the GAMS listing file. This field is NULL is the job has not finished.

filel,..,file5 Input files. The first file filel should be the main .gms file. Other files are optional, and can
contain include files or solver option files.

filenamel,..,filename5 The file names for the input files.

execerror If we could not execute the job, this will contain the exception message.

The implementation of the state variables nJobsRunning and nJobsWaiting is done as follows. A small
table qcounter is used to store these values:

SQL> describe qcounter

Name Null? Type
NAME NOT NULL VARCHAR2(16)
VALUE NUMBER

SQL> select * from qcounter;

NAME VALUE
nRunningJobs 0
nWaitingJobs 0
sQL>

To make sure these values are kept in sync with the number or records in the table qadmin with job status
"W’, 'R’ or ’S’ we use a set of triggers on the qadmin table. To interrogate the number of waiting jobs, we call
a stored function nJobsWaiting, which is implemented as follows:

function nJobsWaiting return integer is

-- return the number of waiting jobs
k integer;

begin
select value into k from qcounter where name = ’nWaitingJobs’;
return k;

end;

The hope is that this approach is faster than counting each time the number of rows in the qadmin table
with a certain job status.
The following script will install the tables:

gqtable.sql

-- GAMS/ORAQUEUE table creation script

-- Author: Erwin Kalvelagen (erwin@gams.com)
-- Date: Feb 2002

-- Requirements: Oracle 8i,9i

-- Called by: all.sql

-- description of qadmin:

-- Jobld : Unique ID for each job (created from sequence)

-- JobStatus : ’W’ (waiting), ’R’ (running), ’F’ (finished)

- ’S’ (submitting)

-- UserName : name of the user

-- JobPriority : integer indicating priority used for scheduling purposes
-- email : email address for notification

-- JobCreationDate : date/time when submitted

-- JobCompletionDate : date/time when finished

-- ShortDescription : short identification of the job

-- LongDescription : longer description

-- filel : GMS source text

-- file2..5 : other files (include files, option files)
-- filenamel..5 : filenames

-- Listing ¢ LST text

-- Log : LOG text

-- ExecError : exec() error message

-- note: the sequence is actually a number, but we store it
-- as a string, as this is a better data type for an Id (one
-- cannot add an id).

-- this is optional:

drop sequence IdSequence;
drop table qadmin;

drop table qcounter;

create sequence IdSequence;

create table gadmin (

JobId varchar2(28) primary key,
JobStatus char (1),

UserName varchar2(80),

PassWord varchar2(80),

LongDescription varchar2(255),
ShortDescription varchar2(80),
JobPriority integer,
JobCreationDate timestamp,
JobCompletionDate timestamp,

email varchar2(80),
log blob,

listing blob,

filel blob,

file2 blob,

file3 blob,

filed blob,

fileb blob,
filenamel varchar2(80),
filename2 varchar2(80),
filename3 varchar2(80),
filename4 varchar2(80),
filename5 varchar2(80),
ExecError varchar2(255)
);

commit;

-- table qcounter holds two numbers that correspond to
-- the number of waiting and running jobs

create table gcounter(

name varchar2(16) primary key,
value number
)5

commit;

insert into qcounter values (’nRunningJobs’,0);
insert into qcounter values (’nWaitingJobs’,0);

commit;

3.6 Scheduling

Jobs that arrive when there is capacity to execute them immediately are scheduling for direct execution. Oth-
erwise, the job is stored in the qadmin table with a job status of "W’. Once the system finishes a job, it will
inspect the table to see if there are waiting jobs. If this is the case, two factors determine which job is chosen.
First it looks at the priority of the job. It considers jobs that have the highest priority for execution. If there
are multiple jobs waiting with the same maximum priority, the oldest job is selected. Age is measured by the
time the job was inserted in the qadmin table.

The following select will implement this:

select JobId into id from
(select * from qadmin where JobStatus=’W’
order by JobPriority desc nulls last, JobCreationDate asc nulls last)
where RowNum < 2;

The condition where RowNum < 2 ensures that only the first record is returned.

3.7 Large objects

The input files (the main .gms file and the additional include files and option files), the listing file and the log
file are stored as a BLOB: Binary Large Object [12]. Although we could have used CLOB’s (Character Large
Objects), it turns out that the PL/SQL Gateway stores files that are uploaded as BLOB’s. As we wanted to
use that facility to use Web based job submission, we decided to use BLOB’s instead.

When the log or listing file is to be passed on to a browser, we need to pass it on as character data. This
can be done easily using the CAST_TO_VARCHAR2 function in the supplied package UTL_RAW.

3.8 E-malil notification

When a job is finished, we send an e-mail to the user with the listing and log file as an attachment if the
email field is not NULL or empty. We use for this the supplied PL/SQL package UTL_SMTP [19]. The MIME
attachment handling is based on some existing code we found on the Web [25].

=101 x|
J File Edit ew Tools Message Help |
8 @ B X *> @
Reply Reply &ll Fonward Frint Delete Frevious i [=2 Addiesses
From: erwinEganms. com
Date: Saturday, March 02, 2002 12:32 P
To: enwin{Eigams. com
Subject: GAMS/OUEUE job
Attach: || message.tst (313 bytes) thspart log (774 bytes] tmspart.Ist [7.19 KB)
=
Thiz 15 an e-mail from GAWS/OEAQTIETE.
Your job has fimshed.
Attached are the log file and the hsting file.
Job Information
JobId:21
Tser Mame erwin
Jeb identificationjob 2
Nfain file nametrnsport gms
Job subtmssion at:02-Mar-2002 12:31:21
Job finished at:02-IMar-2002 12:31:23
DescriptionThis 15 the trnsport model from the model kbrary.
|
A

Figure 1: E-mail notification

The configuration of the mailer is done by two constants in the gamsqueue package interface located in
ggiface.sql: smtp_server is the name of the SMTP server that will forward the e-mail message and smtp_port
is the port number used on the SMTP server for incoming messages (this is usually port 25).

The sending of large messages can be slow. However, the system performs this task as part of a background
process, so the user will not be aware of this.

3.9 Password protection

The system uses a username/password scheme to establish ownership of a model. Notice that the password is
not encrypted. The actual additional protection it offers is therefore limited.

3.10 Put files

Currently there is no support for storing PUT files written by a GAMS job. It is not very difficult to add
support to store PUT files with certain fixed names or fixed extensions. l.e. always store the file RESULT.PUT
or all the files *.PUT. To detect if any PUT files are written and what name they have not directly available,
although a hack would be to inspect the bottom of the listing file where such information is listed.

3.11 Submitting a job

To submit a new job to the queueing system, call the function

function NewJob(UserName in tUserName,
Password in tPassWord,
Priority in tJobPriority,
Email in tEmail,
ShortDescription in tShortDescription,
LongDescription in tLongDescription,
Blobl in tBlob,
Blob2 in tBlob,
Blob3 in tBlob,
Blob4 in tBlob,
Blob5 in tBlob,
Filenamel in tFileName,
Filename2 in tFileName,
Filename3 in tFileName,
Filename4 in tFileName,
Filename5 in tFileName) return tid; -- create a new job

The id is returned which is the primary key of the qadmin table, which allows easy access to any information
one may need to know about the job. Le. the status of a job can be interogated by querying the qadmin table.
The full description of the types can be found in gqiface.sql.

The programmatic interface to the queueing system is simple enough to make it fairly straightforward to
integrate into a larger software system.

3.12 Source files

Here follow the source files that implement the GAMS queueing mechanism.

gqiface.sql

-- Package Interface GAMSQUEUE

-- Author: Erwin Kalvelagen (erwin@gams.com)
-- Date: feb 2002

-- Requirements: Oracle 8i,9i

create or replace package gamsqueue as

nMaxJobsWaiting constant int := 1000; -- max number of jobs in waiting queue
nMaxJobsRunning constant int := 2; -- max number of jobs running at the same time
GamsExecuteDirectory constant varchar2(80) := ’C:\tmp\’;

-- this is the place where subdirectories for gams

-- files are created. I.e. it needs enough free space
-- to accomodate listing and log files and GAMS scratch
-- files. Should include trailing ’\’.

GamsExeName constant varchar2(80) := ’g:\win9x program files\gams20.5\gams.exe’;

-- this is a fully qualified path for gams.exe

smtp_server constant varchar2(80) := ’192.168.1.101’; -- IP address or host name of the SMTP server
smtp_port constant number := 25; -- smtp port number

email_from_address varchar2(80) := ’erwin@gams.com’; -- from address in email

subtype tBlob is blob; -- our blob type

subtype tFileName is varchar2(80); -- type to hold a file name

type tBlobArray is varray(5) of tBlob; -- holds the .gms file and include, option files
type tFileNames is varray(5) of tFileName; -- holds the filenames of the BLOB’s

subtype tStatus is char(1); -- ’W’,’R’,’F’: waiting, running or finished

subtype tId is varchar2(32); -- job identifier, should be unique (generated by sequence)
subtype tUserName is varchar2(80); —-- user name, can be anything

subtype tPassWord is varchar2(80); -- password

subtype tLongDescription is varchar2(255); -- longer description of the purpose of this job
subtype tShortDescription is varchar2(80); -- short description of the purpose of this job
subtype tJobPriority is integer; -- higher number is higher priority

subtype tEmail is varchar2(80); -- e-mail address to send results

type tjob is record (

Id tId,

Status tStatus,

UserName tUserName,

PassWord tPassWord,

Priority tJobPriority,

Email tEmail,

ShortDescription tShortDescription,

LongDescription tLongDescription,

Blobs tBlobArray,

FileNames tFileNames
); - job type
function nJobsWaiting return integer; -- actual number of jobs in waiting queue
function nJobsRunning return integer; -- actual number of jobs running

function NewJob(UserName in tUserName,
Password in tPassWord,
Priority in tJobPriority,
Email in tEmail,
ShortDescription in tShortDescription,
LongDescription in tLongDescription,
Blobl in tBlob,
Blob2 in tBlob,
Blob3 in tBlob,
Blob4 in tBlob,
Blob5 in tBlob,
Filenamel in tFileName,
Filename2 in tFileName,
Filename3 in tFileName,
Filename4 in tFileName,
Filename5 in tFileName) return tid ; -- this is called by external programs

-- these are mainly for internal use

function GetGamsExecutionDirectory return varchar2; -- called by Java Stored Procedure ExecuteJobJ
function GetGamsExe return varchar2; -- called by Java Stored Procedure ExecuteJobJ

procedure RunJob(id in tid); -- called by DBMS_JOB

procedure IncrementWaiting; -- called by trigger

procedure IncrementRunning; -- called by trigger
procedure DecrementWaiting; -- called by trigger
procedure DecrementRunning; -- called by trigger

end gamsqueue;

/

show errors;

gqbody.sql

Package Body GAMS/ORAQUEUE

Author: Erwin Kalvelagen (erwin@gams.com)
Date: Feb/Mar 2002
Requirements: Oracle 8i,9i

job_queue_processes in ora.init is > 0
Called by: all.sql
To do: 1. row locking (also in java part)

-- 2. check changestatus: what happens if no data found

create or replace package body gamsqueue as

function qcountQuery(nam in varchar2) return integer is

-- query the qcounter table
k integer;

begin
select value into k from gcounter where name = nam;
return k;

end gcountQuery;

procedure qcountIncrement(nam in varchar2) is

-- increment value
begin

update qcounter set value = value + 1 where name = nam;
end qcountIncrement;

procedure qcountDecrement(nam in varchar2) is

—-- decrement value

-- make sure we don’t go below O

begin
update qcounter
set value = case when value-1 < O then 0 else value - 1 end
where name = nam;

end gqcountDecrement;

function nJobsWaiting return integer is

-- return the number of waiting jobs
begin

return qcountQuery(’nWaitingJobs’);
end nJobsWaiting;

function nJobsRunning return integer is
-- return the number of running jobs
begin

return qcountQuery(’nRunningJobs’);
end nJobsRunning;

procedure IncrementWaiting is

-- called by trigger
too_many_waiting_jobs exception;
begin
if nJobsWaiting >= nMaxJobsWaiting then
raise too_many_waiting_jobs;
end if;

qcountIncrement (’nWaitingJobs’) ;
end IncrementWaiting;

procedure IncrementRunning is

-- called by trigger
too_many_running_jobs exception;
begin
if nJobsRunning >= nMaxJobsRunning then
raise too_many_running_jobs;
end if;

qcountIncrement (’nRunningJobs’) ;
end IncrementRunning;

procedure DecrementWaiting is

-- called by trigger

begin

10

qcountDecrement (’nWaitingJobs’) ;
end DecrementWaiting;

procedure DecrementRunning is

-- called by trigger
begin

qcountDecrement (’nRunningJobs’) ;
end DecrementRunning;

procedure InsertJob(r in tjob) is

-- insert SQL statement

begin

insert into gqadmin

values (r.Id,
r.Status,

r.UserName,

r.PassWord,

r.LongDescription,

r.ShortDescription,

r.Priority,

SYSTIMESTAMP, -- jobcreationdate

NULL, —-— jobcompletiondate

NULL, -~ log
NULL, -- listing
blobs (1),
blobs(2),
blobs(3),
blobs(4),
blobs(5),
filenames (1),
filenames(2),
filenames(3),
filenames(4),
filenames(5),

NULL
);

commit;
end InsertJob;

procedure ChangeStatus(id in tid, oldstatus in char, newstatus in char) is

-- update SQL statement: change status of job identified by id

-- in rare occasions this can give a no_data_found exception: another
-- session already changed the status.

begin

update qadmin
set JobStatus = newstatus where JobId = id and JobStatus = oldstatus;

commit;

end ChangeStatus;

procedure SubmitJob(id in tid) is

-- submit the job to oracle background queue

JobNo binary_integer; -- job number for DBMS_JOB package
Job varchar2(100) := ’gamsqueue.runjob(’’’||idl|’’’);’; -- actual job (i.e. procedure call)
begin

ChangeStatus(id,’W’,’S’);
DBMS_JOB. SUBMIT (JobNo, Job) ;
commit;

end;

function NewJob(UserName in tUserName,
Password in tPassWord,
Priority in tJobPriority,
Email in tEmail,
ShortDescription in tShortDescription,
LongDescription in tLongDescription,
Blobl in tBlob,

11

Blob2 in tBlob,

Blob3 in tBlob,

Blob4 in tBlob,

Blob5 in tBlob,

Filenamel in tFileName,

Filename2 in tFileName,

Filename3 in tFileName,

Filename4 in tFileName,

Filename5 in tFileName) return tid is

-- incoming job, this is called from the outside world
-- to indicate a new job is to be added to the queue.
-- If we can execute it immediately, do so.

r tjob;

id tid;

too_many_waiting_jobs exception;
begin

-- return immediately if it looks we don’t have space

if (nJobsWaiting >= nMaxJobsWaiting) then
raise too_many_waiting_jobs;
end if;

—-- create unique id

select IdSequence.nextval into id from dual;

-- fill job record and insert it.

-- as id (primary key) is taken from a sequence this will
-- always work.

Id := id;

UserName := UserName;

PassWord := PassWord;

ShortDescription := ShortDescription;

LongDescription := LongDescription;

Email := Email;

Priority := Priority;

Blobs := tBlobArray(Blobl,Blob2,Blob3,Blob4,Blob5);
FileNames := tFileNames(FileNamel,FileName2,FileName3,FileName4,FileName5);
status := ’W’; -- mark as waiting

InsertJob(r);

HHHRRRARRRR

if (nJobsRunning < nMaxJobsRunning) then
SubmitJob(id) ;
end if;

return id;

exception

when NO_DATA_FOUND then
—-- submit job concluded that job ’id’ is already no longer waiting
-- i.e. another process picked it up already. No problem.
return id;

end NewJob;

procedure SelectWaitingJob is

-- select a waiting job to be executed

id tid;
begin
select JobId into id from
(select * from qadmin where JobStatus=’W’

order by JobPriority desc nulls last, JobCreationDate asc nulls last)
where RowNum < 2;

SubmitJob(id);

exception

12

when NO_DATA_FOUND then
-- no remaining jobs to be executed
null;

end SelectWaitingJob;

procedure send_blob(conn in out nocopy utl_smtp.connection,
boundary in varchar2,
filename in varchar?2,
file in out nocopy blob) as

-- send blob
crlf varchar2(2):= chr(13) || chr(10);
pos integer;
cnt integer;
buffer raw(32767);
begin

if (file is NULL) then

return;
end if;
utl_smtp.write_data(conn, crlf || boundary || crlf ||
’Content-Type: application/octet-stream; name="’ || filename || ’"’ || crlf ||
’Content-Disposition: attachment; filename="’ || filename || "’ || crlf ||
’Content-Transfer-Encoding: 8bit’ || crlf || crlf) ;
pos := 1;

cnt := 32767;
dbms_lob.open(file,dbms_lob.lob_readonly);
loop
dbms_lob.read(file,cnt,pos,buffer);
utl_smtp.write_raw_data(conn,buffer);
pos := pos + cnt;
end loop;

-- This will always try read too much. We exploit this by
-- putting the close in the exception handler.

exception
when no_data_found then
dbms_lob.close(file);

end send_blob;

procedure SendEmail(id in tid) is

-- send email message
conn utl_smtp.connection;
email_to_address tEmail;
crlf varchar2(2):= chr(13) || chr(10);
subject varchar2(80);
message varchar2(255);
user_name varchar2(80);
main_file_name varchar2(80);
short_desc varchar2(80);
long_desc varchar2(255);
creation_date timestamp;
finishing_date timestamp;
logfile blob;
logfilename varchar2(80);
listingfile blob;
listingfilename varchar2(80);
k integer;

begin

-- get email address etc.

select email,username,filenamel,shortdescription,longdescription, jobcreationdate, jobcompletiondate,log,listing
into email_to_address,user_name,main_file_name,short_desc,long_desc,creation_date,finishing_date,logfile,listingfile
from gadmin where JobId=id;
if (email_to_address is NULL) then
return;
end if;

—-- open connection

13

conn

-- initi

al handshaking

utl_smtp.open_connection(smtp_server,smtp_port) ;

utl_smtp‘helo(conn, smtp_server);
utl_smtp.mail(conn, email_from_address);
utl_smtp.rcpt(conn, email_to_address);

-- message
subject := ’GAMS/QUEUE job ’;
message := ’This is an e-mail from GAMS/ORAQUEUE.’|| crlf ||

’Your job has finished.’ || crlf ||

’Attached are the log file and the listing file.’|| crlf || crlf;
utl_smtp.open_data(conn);
utl_smtp.write_data(conn, ’Date: ’ || TO_CHAR(SYSDATE,’dd Mon yy hh24:mi:ss’) || crlf);
utl_smtp.write_data(conn, ’From: ’ || email_from_address || crlf);
utl_smtp.write_data(conn, ’Subject: ’ || subject || crlf);
utl_smtp.write_data(conn, ’To: ’ || email_to_address || crlf);
utl_smtp.write_data(conn, ’Mime-Version: 1.0’ || crlf);
utl_smtp.write_data(conn, ’Content-Type: multipart/mixed; boundary="GamsQueue.Boundary.918273645"’ || crlf);
utl_smtp.write_data(conn, ’’ || crlf);
utl_smtp.write_data(conn, ’This is a Mime message sent by GAMS/ORAQUEUE.’ || crlf);
utl_smtp.write_data(conn, ’’ || crlf);
utl_smtp.write_data(conn, ’--GamsQueue.Boundary.918273645° || crlf);
utl_smtp.write_data(conn, ’Content-Type: text/plain; name="message.txt"; charset=US-ASCII’ || crlf);
utl_smtp.write_data(conn, ’Content-Disposition: inline; filename="message.txt"’ || crlf);
utl_smtp.write_data(conn, ’Content-Transfer-Encoding: 7bit’ || crlf);
utl_smtp.write_data(conn, ’’ || crlf);
utl_smtp.write_data(conn, message);
utl_smtp.write_data(conn, ’Job Information’ || crlf ||

> > |l erlf);

utl_smtp.write_data(conn, ’JobId:’|lidl||crlf);
utl_smtp.write_data(conn, ’User Name:’ || user_name || crlf);
utl_smtp.write_data(conn, ’Job identification:’ || short_desc || crlf);
utl_smtp.write_data(conn, ’Main file name:’ || main_file_name || crlf);
utl_smtp.write_data(conn, ’Job submission at:’ || to_char(creation_date,’DD-Mon-YYYY HH24:MI:SS’)||crlf);
utl_smtp.write_data(conn, ’Job finished at:’ || to_char(finishing_date, ’DD-Mon-YYYY HH24:MI:SS’)||crlf);
utl_smtp.write_data(conn, ’Description:’||long_desc || crlf);

-- create names for log file/listing file

k := instr(main_file_name,’.gms’);
if (k=0) then
k := instr(main_file_name,’.GMS’);
end if;
if (k>0) then
main_file_name := substr(main_file_name,1,k-1);
end if;
logfilename := main_file_name Il ’.1log’;
listingfilename := main_file_name || ’.1lst’;
-- send blobs
send_blob(conn, ’--GamsQueue.Boundary.918273645’, logfilename, logfile);
send_blob(conn, ’--GamsQueue.Boundary.918273645’, listingfilename, listingfile);

-- end boundary

utl_smtp.write_data(conn, crlf || ’--GamsQueue.Boundary.918273645--> || crlf);
utl_smtp.close_data(conn);
utl_smtp.quit(conn);

exception

when others then
dbms_output.put_line(’Error:’||SQLCODE||’:’ | |SQLERRM) ;

-- ignore errors

end SendEmail;

function ExecuteJobJ(id in tid, errmess out varchar2) return number

14

as language java name ’GamsQueueJ.ExecuteJobJ(java.lang.String, java.lang.String[]) return int’;
procedure RunJob(id in tid) is

—-- this procedure is called by oracle job queue

errno integer;
errmess varchar2(255);
begin
ChangeStatus(id,’S’,’R’); -- mark as running

-- call java method to execute GAMS

errno := ExecuteJobJ(id,errmess);

-- set job completion date/time

update qgadmin set JobCompletionDate = SYSTIMESTAMP where JobId = id;

—-- completion info

if (errno < 0) then
update qadmin set ExecError = errmess where Jobld = id;

commit;

ChangeStatus(id,’R’,’E’); -- mark as error
else

ChangeStatus(id,’R’,’F’); -- mark as finished
end if;

-- send email to user

SendEmail (id);

-- select next job

SelectWaitingJob;

exception

when others then
SelectWaitingJob;

end RunJob;

function GetGamsExecutionDirectory return varchar2 is

-- return the directory

begin
return GamsExecuteDirectory;
end;

function GetGamsExe return varchar2 is

-- return fully qualified gams.exe

begin
return GamsExeName;
end;

end gamsqueue;
/

show errors

gqtriggers.sql

-- Triggers for GAMS/ORAQUEUE

15

—-- Author: Erwin Kalvelagen (erwin@gams.com)

-- Date: Feb 2002

-- Requirements: Oracle 8i,9i

- job_queue_processes in ora.init is > 0
-- Called by: all.sql

-- These triggers are used to keep track of the number
-- of waiting and running jobs.

create or replace trigger inserttrigger

before insert on gadmin
for each row
begin

case :new.jobstatus

when ’W’ then gamsqueue.IncrementWaiting;
when ’S’ then gamsqueue.IncrementRunning;
when ’R’ then gamsqueue.IncrementRunning;
else
-- should we give error message?
null;
end case;

end inserttrigger;

/

create or replace trigger deletetrigger

before delete on gadmin
for each row
begin

case :new.jobstatus

when ’W’ then gamsqueue.DecrementWaiting;
when ’S’ then gamsqueue.DecrementRunning;
when ’R’ then gamsqueue.DecrementRunning;

else
-- should we give error message?
null;
end case;
end deletetrigger;

/

create or replace trigger updatetrigger
before update of jobstatus on gadmin
for each row

begin

-- optimization: ignore if no change

-- or if S -> R

if (:0ld.jobstatus = :new.jobstatus) then
return;

end if;

if (:o0ld.jobstatus = ’S’ and :new.jobstatus = ’R’) then
return;

end if;

case :0ld.jobstatus
when ’W’ then gamsqueue.DecrementWaiting;
when ’S’ then gamsqueue.DecrementRunning;
when ’R’ then gamsqueue.DecrementRunning;
else
-- should we give error message?
null;
end case;
case :new.jobstatus
when ’W’ then gamsqueue.IncrementWaiting;
when ’S’ then gamsqueue.IncrementRunning;
when ’R’ then gamsqueue.IncrementRunning;
else
-- should we give error message?
null;
end case;
end updatetrigger;

/

16

GamsQueuel.java

// Run a GAMS job

// Author: Erwin Kalvelagen (erwinQgams.com)
// Date: feb 2002
// Environment: Oracle 9i, Java 2 SDK standard edition 1.4.0

// Usage:

// > javac GamsQueuelJ.java

// > loadjava -u gams/queue GamsQueuel.class

//

// The following Java Stored Procedures are callable from PL/SQL:
// int ExecuteJobJ(String jobid, String[] errmess)

//

import java.sql.*;
import oracle. jdbc.*;
import oracle.sql.x*;
import java.io.*;

public class GamsQueueJ {

Connection conn; // database JDBC connection

String id; // job id

String FileNames[]; // filenames

String BaseDir; // directory

String Dir; // working directory

String GamsExe; // name+dir of gams.exe

String ModelName; // fully qualified name of the model

static final int MaxFiles = 5;
public static int ExecuteJobJ(String jobid, String[] errmess) {
//

// This method is called by the Oracle JVM
// from the PL/SQL package GamsQueue.

//

// parameters:

// jobid : JOBID in table qadmin

// errmess[0]: error message can be returned here
// returns : error code, O : success, -1l:failure
//

GamsQueueJ gqg;

try {
gq = new GamsQueueJ();
gq.id = jobid;
gq.connect () ;
gq.run();
errmess[0] = "";
return 0;

}

catch(Exception e) {
errmess[0] = e.toString();
e.printStackTrace();
return -1;

}
private void connect() throws SQLException {

//
// connect to the host database
//

conn = DriverManager.getConnection("jdbc:default:connection:");

private void run() throws SQLException, IOException, InterruptedException {

//
// get name of base directory
//

BaseDir = getBaseDirectory();

//
// get name of GAMS.EXE
//

GamsExe = getGamsExe();

//

17

// get info from qadmin table
//
Statement stmt = conn.createStatement();
FileNames = new String[MaxFiles];
String ql = "select filenamel,filename2,filename3,filename4,filename5 from gadmin where JobId=’"+id+"’";
ResultSet rs = stmt.executeQuery(ql);
if (rs.next()) {

for (int i=0; i<MaxFiles; ++i)

FileNames[i] = rs.getString(i+1);

¥
else

throw new SQLException("No rows in table gqadmin with JobId="+id);
rs.close();

//
// create temp directory
//
Dir = BaseDir + id;
File fdir = new File(Dir);
if (Mfdir.mkdir()) {
//
// does it already exist?
//
if (!fdir.isDirectory())
throw new SQLException("Could not create directory " + Dir);

}

//

// stream the BLOBs to files in directory Dir
//

StreamFiles();

//

// call gams

//

String[] cmdArray = new Stringl[5];
cmdArray[0] = GamsExe;

cmdArray[1] = ModelName;
cmdArray[2] = "WDIR="+Dir;
cmdArray[3] = "SCRDIR="+Dir;
cmdArray[4] = "L0O=2";

Process p = Runtime.getRuntime().exec(cmdArray) ;
p.waitFor();

//

// store listing and log file in database

//

String ListingFile = ForceExtension(ModelName,".lst");
String LogFile = ForceExtension(ModelName,".log");
StoreFile("listing",ListingFile);
StoreFile("log",LogFile);

//
// clean up
//

RemoveFiles();

}
private boolean isNullOrEmpty(String s) {

//
// returns true if s is null or empty

//

if (s == null)
return true;

if (s.equals(""))
return true;

return false;

}

private void StreamFiles() throws SQLException, FileNotFoundException, IOException {
//
// stream BLOBs to files
1/

Statement stmt = conn.createStatement();

for (int i=0; i<MaxFiles; ++i) {
if (isNullOrEmpty(FileNames[i]))

18

continue;

//

// create full name

//

String FullName = Dir + File.separator + FileNames[i];
if (i==0) {

FullName = ForceExtension(FullName, ".gms");
ModelName = FullName;
¥

FileOutputStream f = new FileOutputStream(FullName) ;

//
// get stream for file
//
int ipl = i+1;
String q = "select file"+ipl+" from qadmin where JobId=’"+id+"’";
ResultSet rs = stmt.executeQuery(q);
InputStream is;
if (rs.next())
is = rs.getBinaryStream(1);
else
throw new SQLException("No rows in table qadmin with JobId="+id);
rs.close();

//

// stream and copy data

//

int chunklen;

byte[] chunk = new byte[1024];

while((chunklen = is.read(chunk)) !'= -1)
f.write(chunk,0,chunklen);
f.close();

is.close();

T
private void RemoveFiles() {

//
// remove all files in Dir and then remove the directory itself

//
File dir = new File(Dir);
File[] files = dir.listFiles();

for (int i=0; i<files.length; ++i)
files[i].delete();

dir.delete();
¥

private String getStringFromDB(String ProcCall) throws SQLException {

//
// call PL/SQL function and retrieve string result
//

CallableStatement cs = conn.prepareCall(ProcCall);
cs.registerOutParameter(1,Types.CHAR) ;
cs.executeUpdate() ;
String result = cs.getString(1);
cs.close();
return result;

¥

private String getBaseDirectory() throws SQLException {

//
// get the name of the base directory by calling a PL/SQL function
// gamsqueue.getGamsExecutionDirectory

//

String ProcCall = "{? = call gamsqueue.getGamsExecutionDirectory}";
return getStringFromDB(ProcCall);
¥

private String getGamsExe() throws SQLException {
//

// get the fully qualified name gams.exe
//

19

String ProcCall = "{? = call gamsqueue.getGamsExel}";
return getStringFromDB(ProcCall);
}

private void StoreFile(String ColumnName, String FileName) throws SQLException,
FileNotFoundException, IOException {

//
// store file in BLOB
// to do : think about row locks.

//

String selectstmt = "select "+ColumnName+" from gadmin where JobId=’"+id+"’";

String updatestmt = "update qadmin set "+ColumnName+"=empty_blob() where JobId = ’>"+id+"’";
BLOB blob;

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(selectstmt);
if (rs.next())
blob = ((OracleResultSet)rs).getBLOB(1);
else
throw new SQLException("No rows in table gadmin with JobId="+id);
rs.close();

if (blob == null) {
//
// create empty blob first
//
stmt.executeQuery (updatestmt) ;
StoreFile(ColumnName,FileName) ;
return;

}

OutputStream os = blob.getBinaryOutputStream();
int size = blob.getBufferSize();

byte[] buffer = new bytel[sizel;

int length = -1;

FileInputStream is = new FileInputStream(FileName) ;
while ((length = is.read(buffer)) != -1)
os.write(buffer,0,length);

os.close();
is.close();

}
private String ForceExtension(String fln, String newExtension) {

//
// replace extension .gms

//

String s = fln;

if (s.endsWith(".gms") || s.endsWith(".GMS"))
s = s.substring(0,s.length()-4);

s = s + newExtension;

return s;

3.13 Installation notes

First you need to make sure that Oracle allows background processes. This can be set through the parameter
job_queue_processes in ora.init. Second, we need a Java compiler, which can be downloaded from Sun as
part of the Java 2 SDK. We used standard edition 1.4.0. Then a database user need to be added. We used as
username and password gams/queue. Make sure this user has enough privileges such as JAVASYSPRIV to use
Runtime.exec().

Some of settings in the beginning of ggiface.sql need to be tailored. It may be beneficial to use an Oracle
PL/SQL Integrated Development Environment such as TOAD [23]. Such a tool will make it much easier to
navigate around in your database and to quickly edit and compile stored procedures.

To install the complete system do:

20

all.cind

: run all installation scripts
: author: Erwin Kalvelagen (erwin@gams.com)

call setclasspath.cmd

javac GamsQueuelJ.java

call loadjava -u gams/queue GamsQueueJ.class

sqlplus gams/queue @all

call loadpsp -replace -user gams/queue gamsupload.psp
call loadpsp -replace -user gams/queue gamsjobs.psp

all.sql

-- run all install scripts

-- Author: Erwin Kalvelagen (erwin@gams.com)

-- Date: Feb 2002
-- Usage: sqplus gams/queue @all

-- Called by: all.cmd

set serveroutput on
@@gqgtable
@Chtmltable
Q@gqgiface

@@ggbody
@@gqtriggers

show errors
@@htmlproc

show errors

quit

The above installation routines also include installation of the sample application descibed below.

4 Application: a Web submission tool

4.1 Introduction

As an application of the queueing system, we have implemented a Web based job submission tool. The user
submits jobs through his Web browser. At the server end we have used the Oracle HT'TP server, a version of
the Apache HTTP Server which is included in Oracle’s Application Server [22].

As server scripting language we have used PL/SQL, using the PL/SQL Gateway [21].

For the dynamic content we have used PL/SQL Server Pages (PSP), a concept similar to Java Server Pages
and Active Server Pages where HTML is mixed with executable code in the form of PL/SQL statements.

A submission page is written that looks as depicted in figure 2.

After specifying the model and the other information, the response as shown in figure 3 will be generated.

The buttons in the log and listing columns allow for downloading the log file and listing file.

4.2 Implementation

The web submission tool pages are written in a combination of HTML, JavaScript, and PL/SQL Server Pages.
The server side processing is performed using PL/SQL stored procedures. The whole system comprises of just
four files, which are reproduced below.

It is noted that we not paid much attention to security. It is therefore not advised to run the system as is
on a server that can be accessed unrestricted from the Internet. The system can be hardened in different ways,
including restricting access to certain users, or certain domains. It is noted that we run GAMS in unrestricted,
unsecure mode, which causes a big security hole. GAMS has a parameter EXECMODE to disable some of the very
dangerous features, such as $call and execute but we believe that there remain serious security issues. A
possibly better protection mechanism is to put the server behind a properly configured firewall or router that
ensables access to just a number of trusted users.

21

2} GAMS /ORAQUEUE UPLDAD FACILITY - Microsoft Internet Explorer ! =101 =]

J Fle Edit “iew Favorites Tools Help |ﬁ

J G Back + = - @ 7t | @ Gearch [EFavaites (AHistow (B S B 5] B

| Address [@ hitp:/192.168.1.100/pls /gamsqueue/gamsuplaad | @h6o || Links
[~

Joh Submission

This fill-out form can be used to submt a GANS job.

This name is used to find jobs owned

User name I b
OOl
The password is used to protect your
Password I johs from access by others.
Tob Identifier | Short identifier of the job.
o ;I Here wou can specify information
Description J about the job.

Priority of this job. Jobs with higher

Priority |1 Lowest priority 'I priotity are executed before jobs with

lowrer priority.
et I if_';};;c;.f[ii;rd; :es.sults are mailed to this
Eliam L | Browse... | élﬁ%ec;ﬂe;ihth&;}gf afil -
Llcl_ude or I Browss. | If the model contains include files or
opthion file option files, specify them here.

I:;ctliiieﬁfer I Browse... |

T:;ctliiieﬂf; I Browse... |

ir;ctliiieﬂfer I Browse... | -
Submit Cluery |

- e

N

Figure 2: GAMS Model Submission Form

A big advantages of using a Web based front-end: user’s do not need to have GAMS installed on their
machine. Just a browser is enough to submit jobs and retrieve results. A powerful server may provide better
throughput than an underpowered client laptop, and just a single license of GAMS and the solver components
is needed.

A possible issue with platform independence is the file format of solver option files. GAMS can read UNIX
and DOS .gms files and include files of both UNIX and DOS. The solvers however may need option files in
native format with LF or CR/LF terminated lines.

There are a number of possible extensions possible such as: only registered users can use the system, cookies
can be used to make login easier, forms can remember their last values, the HTML pages can be prettier, etc.

4.3 Password handling

Although the system provides a way to specify a password using the standard HTML input password control,
we would like to emphasize that the password is not at all protected. It travels plain text over the line and it
can be viewed by inspecting some of the HTML files served by the system. L.e. it provides limited functionality
in making the system more secure.

4.4 Configuration

For the web submission tool to work, a properly configured HTTP server and PL/SQL gateway is needed. Both
are part of Oracle’s Application Server offering. For our example we configured a Database Access Descriptor

22

GAMS/DRAQUEUE JOB TABELE - Microzoft Internet Explorer) B] 34

J Fle Edit “iew Favorites Tools Help |ﬁ
| Back » = - @ 4] 4| QSeach [eFavoites CAHson |y S W 5 B
| Address [@] hitp://192.168.1.100/pls/gamsqueve/check_jobs_handler | @h6o || Links

-

GAMS/QUEUE (Jueue Status

Jobs waiting 0 (max = 1000
Jobs rumming 0 (maz=2)

GAMS/ORAQUEUE Job Table

These are the jobs for user erwin and the specified password.

id! identification? stat® file? submitted® finished?® lug1]isting§ delete? |:les|:r‘i111:iunm
: 01-Mar 01-Mar This is the trnsport
1 job 1l F trmsport.gms 531919 53.19-90 Shiow | Shiow | Delete | 0

1The internally generated job id

23hort description specified when submitting the job

3lob status: "W=waiting, '3'=submitted for execution, 'R'=running, 'F'=finished, 'E'=etror

dFilename: name of the .gms file

SDatedtite when the job was submitted by the user

fDatedtitme when the job was finished

TWhen clicked the log file will be downloaded

2When clicked the listing file will be downloaded

9When clicked the job will be removed from the job table. Log and listing file will be no longer available.
10Long description

Refresh Queue Takle

SIORAQUEUE Job (uery

Here you can check the status of other user jobs.

e I This name is used to find jobs owned by you.

name

£ T The password is used to protect vour jobs from access by LI
&1 [|_ |4 Intemet 4

Figure 3: GAMS Job table

which uses the document table doctable which is created by the script htmltable.sql (see the next section).
We used Basic HTTP Authentication in our example.

4.5 Sources

gamsupload.psp

<%@ page language="PL/SQL" %>
<%@ plsql procedure="gamsupload" %>

<html>

<head>
<title>GAMS/ORAQUEUE UPLOAD FACILITY</title>
</head>

<body>
<% sectionheader (’GAMS/ORAQUEUE Job Upload Facility’); %>

This tool allows you to submit GAMS jobs to the GAMS/QUEUE batch queue system.
After submission your job will be run once resources are available to do so.
You can periodically check the status of your job.

If the job has finished you can download the results or if you specified an
e-mail address, both the listing file and the log file will be e-mailed to
you.

<%, sectionheader (’GAMS/QUEUE Queue Status’); %>

23

g File - Microsoft Internet Explorer

10l x|
J File Edit Wiew Favortes Toolz Help ﬁ

J 4=Back - o= - (5 7t | 0 Search (5 Favorites &4 History | By S o

JAgIdress I@ http:##192.168.1.100/pls/gamsqueus/check_jobs_handler j o |J Lirks **

-

GAMS Rev 130 Copyright (C) 1987-200Z GAMS Dewvelopment. L1l rights reserved

Licensee: Erwin Kalwvelagen G011121:2210CE-WIN
GAM3 Development Corporation DC3545

——— Starting cowmpilation

——— TENSPORT.GMZ (69) 1 Mb

——— Starting execution

—-—— TENSPORT.GMZ (45) 2 Mb

——— Generating model transport

——— TRMNSPORT.GMZ (66) 2 Mo

- 6 rows, 7 columns, and 19 non-zeroes.

——— Executing EDMLP

BDMLF 1.3 Jan 31, 2002 WIN.ED.ED 20.5 O056.045.0359.WAT

Beading data. ..

Work space allocated - 0.03 Mo
Iter 3inf/Cbhjective Status Num Freg
1 Z2.25000000E402 infeas 1 1
4 1.53675000E+02 nopt a

SOLVEER STATUI: 1 NORMAL COMPLETION
MODEL STATUZ : 1 OPTIMAL
OBJECTIVE WALUE 153.67500

——— Restarting execution

——— THWSPNRT GMSiARL 1 Mh

[&] Done ’_’_|0 Internst

N | K

Figure 4: Log file downloaded in a browser

<table>
<tr>

<td> Jobs waiting </td>

<td> <J, htp.print(gamsqueue.njobswaiting); %> </td>

<td> (max = <) htp.print(gamsqueue.nmaxjobswaiting); %>) </td>
</tr>
<tr>

<td> Jobs running </td>

<td> <J, htp.print(gamsqueue.njobsrunning); %> </td>

<td> (max = <) htp.print(gamsqueue.nmaxjobsrunning); %>) </td>
</tr>
</table>

<% sectionheader (’Job Query’); %>
Here you can check the status of your jobs.
<form enctype="multipart/form-data" action="check_jobs_handler" method="POST">

<table>
<tr>
<td>User name</td>
<td><input type="text" size=40 name="html_username"></td>
<td>This name is used to find jobs owned by you.</td>
</tr>
<tr>
<td>Password</td>
<td><input type="password" size=40 name="html_password"></td>
<td>The password is used to protect your jobs from access by others.</td>
</tr>
<tr>
<td></td>
<td><input type="submit"></td>
</tr>
</table>

<input type="hidden" name="html_id" value="">
<input type="hidden" name="html_action" value="">

</form>

<), sectionheader(’Job Submission’); %>

24

This fill-out form can be used to submit a GAMS job.

<form enctype="multipart/form-data" action="submit_job_handler" method="POST">
<table>
<tr>
<td>User name</td>
<td><input type="text" size=40 name="html_username"></td>
<td>This name is used to find jobs owned by you.</td>
</tr>
<tr>
<td>Password</td>
<td><input type="password" size=40 name="html_password"></td>
<td>The password is used to protect your jobs from access by others.</td>
</tr>
<tr>
<td>Job Identifier</td>
<td><input type="text" size=40 name="html_identifier"></td>
<td>Short identifier of the job.</td>
</tr>
<tr>
<td>Description</td>
<td><textarea rows=3 cols=40 name="html_description"></textarea></td>
<td>Here you can specify information about the job.</td>
</tr>
<tr>
<td>Priority</td>
<td><select name="html_priority">
<option value="1">1 Lowest priority
<option value="2">2
<option value="3">3
<option value="4">4 Highest priority
</td>
<td>Priority of this job. Jobs with higher priority are executed before jobs with lower priority.</td>
</tr>
<tr>
<td>E-mail</td>
<td><input type="text" size=40 name="html_email"></td>
<td>If specified, results are mailed to this e-mail address.</td>
</tr>
<tr>
<td>Main .GMS file</td>
<td><input type="file" size=40 name="html_filel"></td>
<td>This is the name of the .GMS file. GAMS is called with this file as argument.</td>
</tr>
<tr>
<td>Include or option file</td>
<td><input type="file" size=40 name="html_file2"></td>
<td>If the model contains include files or option files, specify them here.</td>
</tr>
<tr>
<td>Include or option file</td>
<td><input type="file" size=40 name="html_file3"></td>
</tr>
<tr>
<td>Include or option file</td>
<td><input type="file" size=40 name="html_file4"></td>
</tr>
<tr>
<td>Include or option file</td>
<td><input type="file" size=40 name="html_file5"></td>
</tr>
<tr>
<td></td>
<td><input type="submit"></td>
</tr>
</table>

</form>

<% sectionheader(’Powered by’); %>

<% htp.print(owa_util.get_cgi_env(’SERVER_SOFTWARE’)); %>
</body>

</html>

gamsjobs.psp

<%@ page language="PL/SQL" %>
<%@ plsql procedure="gamsjobs" %>

25

<%@ plsql parameter="user_name" type="varchar2" %>
<%@ plsql parameter="pass_word" type="varchar2" >

<html>

<head>
<title>GAMS/ORAQUEUE JOB TABLE</title>
</head>

<body>

<script language="javascript"> function ShowLog(id,user,pw) {
f = document.frm;
f.html_id.value=id;
f.html_action.value="log";
f.html_username.value=user;
f.html_password.value=pw;
f.submit();
}
</script>

<script language="javascript"> function ShowListing(id,user,pw) {
f = document.frm;
f.html_id.value=id;
f.html_action.value="listing";
f.html_username.value=user;
f.html_password.value=pw;
f.submit();
}
</script>

<script language="javascript"> function DeleteRecord(id,user,pw) {
f = document.frm;

f.html_id.value=id;

f.html_action.value="delete";

f.html_username.value=user;

f.html_password.value=pw;

f.target="";

f.submit();

}

</script>

<script language="javascript"> function refresh(user,pw) {
f = document.frm;

f.html_username.value=user;
f.html_password.value=pw;
f.target="";
f.submit();

}

</script>

<% sectionheader (’GAMS/QUEUE Queue Status’); %>

<table>
<tr>

<td> Jobs waiting </td>

<td> <J, htp.print(gamsqueue.njobswaiting); %> </td>

<td> (max = <% htp.print(gamsqueue.nmaxjobswaiting); %>) </td>
</tr>
<tr>

<td> Jobs running </td>

<td> <J, htp.print (gamsqueue.njobsrunning); %> </td>

<td> (max = <) htp.print(gamsqueue.nmaxjobsrunning); %>) </td>
</tr>
</table>

<% sectionheader (’GAMS/ORAQUEUE Job Table’); %>
These are the jobs for user <J=user_name’> and the specified password.<p>

<table>

<tr>
<th>id¹</th>
<th>identification²</th>
<th>stat³</th>
<th>file⁴</th>
<th>submitted⁵</th>
<th>finished⁶</th>
<th>log⁷</th>
<th>listing⁸</th>
<th>delete⁹</th>
<th>description¹⁰</th>

</tr>

26

<% for item in (select jobid,shortdescription,longdescription, jobstatus, jobcreationdate,jobcompletiondate,filenamel
from gadmin where username=user_name and password=pass_word) loop h>
<tr>
<td><%= item.jobid %></td>
<td><%= item.shortdescription %></td>
<td><%= item.jobstatus %></td>
<td><%= item.filenamel %></td>
<td><Y= to_char(item.jobcreationdate,’DD-Mon HH24:MI:SS’) %></td>
<td><%= to_char(item.jobcompletiondate,’DD-Mon HH24:MI:SS’) ¥></td>
<td><button onClick=’ShowLog("<%=item.jobid%>","<)=user_name},>","<%=pass_word’>")’>Show</button></td>
<td><button onClick=’ShowListing("<%=item.jobid}>","<)=user_name},>","<%=pass_word}>")’>Show</button></td>
<td><} if (item.jobstatus = ’F’ or item.jobstatus = ’E’ or item.jobstatus = ’W’) then %>
<button onClick=’DeleteRecord("<%=item.jobid%>","<%=user_name’>","<)=pass_word}>")’>Delete</button>
<% end if; %> </td>
<td><J= item.longdescription %></td>
</tr>
<% end loop; %>
</table>

<p>

1The internally generated job id

2Short description specified when submitting the job

3Job status: ’W’=waiting, ’S’=submitted for execution,
’R’=running, ’F’=finished, YE’=error

4Filename: name of the .gms file

56Date/time when the job was submitted by the user

6Date/time when the job was finished

7When clicked the log file will be downloaded

8When clicked the listing file will be downloaded

9When clicked the job will be removed from the job table.

Log and listing file will be no longer available.

10Long description

<p>

<button onClick=’refresh("<J=user_name}>","<J=pass_word}>")’>Refresh Queue Table</button>

<p>

<% sectionheader (’GAMS/ORAQUEUE Job Query’); %>

Here you can check the status of other user jobs.

<form name="frm" enctype="multipart/form-data" action="check_jobs_handler" method="POST" target="new">

<table>
<tr>
<td>User name</td>
<td><input type="text" size=40 name="html_username"></td>
<td>This name is used to find jobs owned by you.</td>
</tr>
<tr>
<td>Password</td>
<td><input type="password" size=40 name="html_password"></td>
<td>The password is used to protect your jobs from access by others.</td>
</tr>
<tr>
<td></td>
<td><input type="submit"></td>
</tr>
</table>

<input type="hidden" name="html_id" value="">
<input type="hidden" name="html_action" value="">

</form>

</body>
</html>

htmltable.sql

-- Create table for HTML interface

-- Author: Erwin Kalvelagen (erwin@gams.com)
-- Date: Feb 2002

27

-- Called by: all.sql
-- See also: 0Oracle Corp., Using the PL/SQL gateway

drop table doctable;

-- document table definition

create table doctable (

name varchar2(256) unique not null,
mime_type varchar2(128),
doc_size number,

dad_charset varchar2(128),
last_updated date,
content_type varchar2(128),
blob_content blob

commit;

htmlproc.sql

-- Create stored procedures for HTML interface

-- Author: Erwin Kalvelagen (erwin@gams.com)
-- See also: Oracle Corp., Using the PL/SQL gateway

create or replace procedure sectionheader(header in varchar2) is

-- a section header is printed
begin
htp.print (’<TABLE WIDTH=100% STYLE="color:white; background-color:darkblue" ><TR><TH ALIGN=left>’
|| header
|| ></TH></TR></TABLE>’) ;
end sectionheader;

/

create or replace procedure welcome as

-- for testing

begin
htp.htmlopen;
htp.headopen;
htp.title(’Welcome’);
htp.headclose;
htp.bodyopen;
htp.header(1,’welcome’);
htp.print (’Welcome to GAMSQUEUE’);
htp.header(2,’0WA_UTIL info’);
htp.header(3,’version’);
owa_util.print_version;
htp.header(3,’cgi environment’);
owa_util.print_cgi_env;
htp.bodyclose;

htp.htmlclose;
end welcome;

/

create or replace procedure report_error(mess in varchar2) as

-- very basic error reporting
begin
htp.htmlopen;
htp.headopen;
htp.title(’Error’);
htp.headclose;

28

htp.bodyopen;
htp.print (mess) ;
htp.bodyclose;
htp.htmlclose;
end report_error;

/

create or replace procedure print_submission_data(
html_username in varchar?2,
html_password in varchar2,
html_identifier in varchar?2,
html_description in varchar2,
html_priority in varchar2,
html_email in varchar2,
html_filel varchar?2,
html_file2 varchar?2,
html_file3 in varchar2,
html_file4 in varchar2,
html_fileb varchar2
) as

-- for debugging

only

begin
htp.
htp.
htp.
htp.
htp.
htp.
htp.

htmlopen;

headopen;

title(’Files Uploaded’);
headclose;

bodyopen;
header(1,’Info’);
preOpen() ;

htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.

print (’html_username: ’

print ("html_password:
print ("html_identifier:
print (*html_description:
print (’html_priority:
print ("html_email:

print ("html_filel:

print ("html_file2:

print ("html_file3:

print (Chtml_file4:

|html_username) ;
|html_password) ;
|html_identifier);
|html_description) ;
|html_priority);
|html_email);
|html_filel);
|html_file2);
|html_file3);
|html_filed);

>

)

)

>

B

)

)

>

|
|
|
|
|
7
|
|
|
|
|

htp.
htp.

print ("html_file5: 2
preClose() ;

htp.bodyclose;

htp.htmlclose;
end print_submission_data;

|html_file5);

/

create or replace procedure get_blob(
filename in varchar2,
file out blob
) as

-- get blob for filename
begin
if (filename is NULL) then
return;
end if;

select blob_content into file from doctable
where name=filename;

end get_blob;
/

create or replace procedure get_filename(
filename in varchar2,
newfilename out varchar2
) as

-- remove xxxx/ from filename
k integer;
not_found exception;
begin
if (filename is NULL) then
return;
end if;

k := instr(filename,’/’);
if (k=0) then

29

raise not_found;
end if;
newfilename := substr(filename,k+1);

end get_filename;

/

create or replace procedure htmlheader(title in varchar2) as

-- utility procedure

begin
htp.htmlopen;
htp.headopen;
htp.title(title);
htp.headclose;
htp.bodyopen;
htp.Preopen() ;

end htmlheader;

/

create or replace procedure htmlfooter as

-- utility procedure
begin
htp.preClose();
htp.bodyclose;
htp.htmlclose;
end htmlfooter;

/

create or replace procedure streamrawdata(file in out nocopy blob) as

-- stream blob to web browser
pos integer;
cnt integer;
buffer raw(32767);
begin
pos := 1;
cnt := 32767;
dbms_lob.open(file,dbms_lob.lob_readonly);
loop
dbms_lob.read(file,cnt,pos,buffer);
htp.prn(utl_raw.cast_to_varchar2(buffer));
pos := pos + cnt;
end loop;

exception
when no_data_found then
dbms_lob.close(file);
when others then
null;
end streamrawdata;

/

create or replace procedure show_log(user in varchar2, pw in varchar2, id in varchar2) as

-- show log file

file blob;
begin
htmlheader (’Log File’);

select log into file from gqadmin where jobid = id and username = user and password = pw;
if (file is NULL) then
htp.print(’Log file not available’);
end if;
streamrawdata(file);
htmlfooter;
exception
when no_data_found then

htp.print(’No job found with jobid=’||id||’,username=’||user||’,password=***’);
htmlfooter;

30

when others then
htp.print (’error in show_log, code=’||SQLCODE| |’ errmess=’||SQLERRM) ;
htmlfooter;
end show_log;

/

create or replace procedure show_listing(user in varchar2, pw in varchar2, id in varchar2) as

-- show listing file
file blob;
begin
htmlheader (’Listing File’);

select listing into file from gadmin where jobid = id and username = user and password = pw;

if (file is NULL) then
htp.print (’Listing file not available’);
end if;

streamrawdata(file);
htmlfooter;

exception
when no_data_found then
htp.print(°’No job found with jobid=’||id||’,username=’||user||’,password=***’);
htmlfooter;
when others then
htp.print(’error in show_listing, code=’||SQLCODE||’> errmess=’||SQLERRM) ;
htmlfooter;
end show_listing;

/

create or replace procedure delete_record(user in varchar2, pw in varchar2, id in varchar2) as
begin

delete from gadmin where jobid = id and username = user and password = pw;

-- show status of jobs

gams jobs (user, pw);

exception
when no_data_found then
htp.print(°’No job found with jobid=’||id||’,username=’||user||’,password=***’);
htmlfooter;
when others then
htp.print(’error in delete_record, code=’||SQLCODE||’ errmess=’||SQLERRM);
htmlfooter;
end delete_record;

/
create procedure gamsjobs(user_name varchar2, pass_word varchar2) as

-- This is just a placeholder.
-- Will be replaced by loadpsp call in all.cmd.
-- If already exist, don’t replace.
begin
null;
end gamsjobs;

/

create or replace procedure check_jobs_handler(
html_username in varchar?2,
html_password in varchar2,
html_action in varchar2,
html_id in varchar2
) as

-- check gams jobs
begin
case html_action
when ’’ then gamsjobs(html_username, html_password) ;

31

when ’log’ then show_log(html_username, html_password, html_id);
when ’listing’ then show_listing(html_username, html_password, html_id);
when ’delete’ then delete_record(html_username, html_password, html_id);
else
gamsjobs (html_username, html_password) ;
end case;
end check_jobs_handler;

/

create or replace procedure submit_job_handler(
html_username in varchar?2,
html_password in varchar2,
html_identifier in varchar2,
html_description in varchar2,
html_priority in varchar2,
html_email in varchar2,
html_filel in varchar2,
html_file2 in varchar2,
html_file3 in varchar2,
html_file4 in varchar2,
html_fileb in varchar2
) as

-- gams upload script (multiple files)

debug boolean := false;
filel Dblob;
file2 Dblob;
file3 blob;
file4 blob;
fileb blob;

filenamel varchar2(80);
filename2 varchar2(80);
filename3 varchar2(80);
filename4 varchar2(80);
filename5 varchar2(80);
priority integer;

id gamsqueue.tid;

begin

if (debug) then
print_submission_data(html_username,html_password,html_identifier,html_description,
html_priority,html_email,html_filel,html_file2,html_file3,html_file4,html_file5);

- return;

end if;

-- handle data. First get blobs.
get_blob(html_filel,filel);
get_blob(html_file2,file2);
get_blob(html_file3,file3);
get_blob(html_file4,file4d);
get_blob(html_file5,fileb);

-- now remove leading xxxxx/ from filename
get_filename (html_filel,filenamel);
get_filename (html_file2,filename2);
get_filename (html_file3,filename3);
get_filename (html_file4,filename4);
get_filename (html_file5,filename5);

priority := to_number (html_priority);

id := gamsqueue.newjob(html_username, html_password, priority, html_email,
html_identifier, html_description, filel, file2, file3,
file4, fileb5, filenamel, filename2, filename3, filename4,
filename5) ;

-- show status of jobs

gamsjobs (html_username, html_password) ;
exception
when others then
report_error(’error in submit_job_handler, code=’||SQLCODE||’ errmess=’||SQLERRM);

end submit_job_handler;

32

5 Conclusion

We have shown how Oracle can be used to implement a multi user batch queueing system as well as a Web based
job submission tool. The whole system is platform independent: it should port easily to a UNIX architecture.
The system can be used as a framework for customized applications.

References

1]

2]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
22]

KEN ARNOLD, JAMES GOSLING AND DAVID HOLMES, The Java Programming Language, Third Edition,
Addison-Wesley, 2000.

JAMES GOSLING, BILL Joy, GUY STEELE AND GILAD BRACHA, The Java Language Specification, Second
Edition, Addison-Wesley, 2000.

ERIC GRANGER,

Research), 2000.

Web Publishing using PL/SQL and Java, CERN (European Organization for Nuclear

THOMAS KYTE, Ezpert one on one: Oracle, Wrox Press, 2001.

BRYN LLEWELLYN AND ROBERT PANG, Oracle 9iAS Best Practices in PSP Development, paper, August,

2001.

KEVIN MILLER, Professional NT Services, Wrox Press, 1998.

RANDY C. MORIN, Programming NT Services: Implementing Windows Application Servers, Wiley, 2000.

ORACLE CORP.,
ORACLE CORP.,
ORACLE CORP.,
ORACLE CORP.,
ORACLE CORP.,
ORACLE CORP.,
ORACLE CORP.,
ORACLE CORP.,
ORACLE CORP.,
ORACLE CORP.,
ORACLE CORP.,
ORACLE CORP.,
ORACLE CORP.,
ORACLE CORP.,

ORACLE CORP.,

Oracle 9i, Database Administrator’s Guide, June, 2001.

Oracle 9i, Database Administrator’s Guide for Windows, June, 2001.

Oracle 9i, Application Developer’s Guide — Fundamentals, June, 2001.

Oracle 9i, Application Developer’s Guide — Advanced Queueing (AQ), July, 2001.
Oracle 9i, Application Developer’s Guide — Large Objects (LOBs), July, 2001.
Oracle 9i, Java Developer’s Guide, June, 2001.

Oracle 9i, JDBC Developer’s Guide and Reference, June, 2001.

Oracle 9i, Java Stored Procedures Developer’s Guide, June, 2001.

Oracle 9i, PL/SQL User’s Guide and Reference, June, 2001.

Oracle 9i, SQL Reference, June, 2001.

Oracle 9i, Supplied Java Packages Reference, June, 2001.

Oracle 9i, Supplied PL/SQL Packages and Types Reference, July, 2001.
Oracle 9i Application Server, PL/SQL Web Toolkit Reference, April, 2001.
Oracle 9i Application Server, Using the PL/SQL Gateway, May, 2001.

Oracle 9i Application Server, Qverview Guide, November 2000.

[23] QUEST SOFTWARE, http://www.quest.com/toad/.

33

[24] W. RICHARD STEVENS, Advanced Programming in the UNIX Environment, Addison-Wesley, 1992.

[25] DAVE WOTTON, Mail_files: an Oracle PL/SQL procedure to send an email with file attachments, http:
//home.clara.net/dwotton/dba/oracle_smtp.htm.

34

