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Abstract. This document illustrates the Dantzig-Wolfe decomposition algo-

rithm using GAMS.

1. Introduction

Dantzig-Wolfe decomposition [2] is a classic solution approach for structured
linear programming problems. In this document we will illustrate how Dantzig-
Wolfe decomposition can be implemented in a GAMS environment. The GAMS

language is rich enough to be able to implement fairly complex algorithms as is
illustrated by GAMS implementations of Benders Decomposition [10], Cutting Stock
Column Generation [11] and branch-and-bound algorithms [12].

Dantzig-Wolfe decomposition has been an important tool to solve large struc-
tured models that could not be solved using a standard Simplex algorithm as they
exceeded the capacity of those solvers. With the current generation of simplex and
interior point LP solvers and the enormous progress in standard hardware (both in
terms of raw CPU speed and availability of large amounts of memory) the Dantzig-
Wolfe algorithm has become less popular.

Implementations of the Dantzig-Wolfe algorithm have been described in [5, 6, 7].
Some renewed interest in decomposition algorithms was inspired by the availability
of parallel computer architectures [8, 13]. A recent computational study is [16].
[9] discusses formulation issues when applying decomposition on multi-commodity
network problems. Many textbooks on linear programming discuss the principles
of the Dantzig-Wolfe decomposition [1, 14].

2. Block-angular models

Consider the LP:

min cTx
Ax = b

x ≥ 0
(1)

where A has a special structure:

(2) Ax =


B0 B1 B2 . . . BK

A1

A2

. . .
AK




x0

x1

x2

...
xK

 =


b0
b1
b2
...
bK


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The constraints

(3)
K∑

k=0

Bkxk = b0

corresponding to the top row of sub-matrices are called the coupling constraints.
The idea of the Dantzig-Wolfe approach is to decompose this problem, such that

never a problem has to be solved with all sub-problems Akxk = bk included. Instead
a master problem is devised which only concentrates on the coupling constraints,
and the sub-problems are solved individually. As a result only a series of smaller
problems need to be solved.

3. Minkowski’s Representation Theorem

Consider the feasible region of an LP problem:

(4) P = {x|Ax = b, x ≥ 0}

If P is bounded then we can characterize any point x ∈ P as a linear combination
of its extreme points x(j):

x =
∑

j

λjx
(j)

∑
j

λj = 1

λj ≥ 0

(5)

If the feasible region can not assumed to be bounded we need to introduce the
following:

x =
∑

j

λjx
(j) +

∑
i

µir
(i)

∑
j

λj = 1

λj ≥ 0
µi ≥ 0

(6)

where r(i) are the extreme rays of P . The above expression for x is sometimes
called Minkowski’s Representation Theorem[15]. The constraint

∑
j λj = 1 is also

known as the convexity constraint.
A more compact formulation is sometimes used:

x =
∑

j

λjx
(j)

∑
j

δjλj = 1

λj ≥ 0

(7)

where

(8) δj =

{
1 if x(j) is an extreme point
0 if x(j) is an extreme ray
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I.e. we can describe the problem in terms of variables λ instead of the original
variables x. In practice this reformulation can not be applied directly, as the number
of variables λj becomes very large.

4. The decomposition

The K subproblems are dealing with the constraints

Akxk = bk

xk ≥ 0
(9)

while the Master Problem is characterized by the equations:

min
∑

k

cTk xk∑
k

Bkxk = b0

x0 ≥ 0

(10)

We can substitute equation 7 into 10, resulting in:

min cT0 x0 +
K∑

k=1

pk∑
j=1

(cTk x
(j)
k )λk,j

B0x0 +
K∑

k=1

pk∑
j=1

(Bkx
(j)
k )λk,j = b0

pk∑
j=1

δk,jλk,j = 1 for k = 1, . . . ,K

x0 ≥ 0
λk,j ≥ 0

(11)

This is a huge LP. Although the number of rows is reduced, the number of extreme
points and rays x(j)

k of each subproblem is very large, resulting in an enormous
number of variables λk,j . However many of these variables will be non-basic at
zero, and need not be part of the problem. The idea is that only variables with a
promising reduced cost will be considered in what is also known as a delayed column
generation algorithm.

The model with only a small number of the λ variables, compactly written as:

min cT0 x0 + cTλ′

B0x0 +Bλ′ = b0

∆λ′ = 1
x0 ≥ 0

λ′ ≥ 0

(12)

is called the restricted master problem. The missing variables are fixed at zero.
The restricted master problem is not fixed in size: variables will be added to this
problem during execution of the algorithm.
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Sub 1

Sub 2

New columnsuu
Master

Duals

44

...

Sub K

Figure 1. Communication between restricted master and sub-problems

The attractiveness of a variable λk,j can be measured by its reduced cost1. If
we denote the dual variables for constraint B0x0 + Bλ′ = b0 by π1 and those for
the convexity constraints

∑
j δk,jλ

′
k,j = 1 by π(k)

2 , then reduced cost for the master
problem look like:

(14) σk,j = (cTk x
(j)
k )− πT

(
Bkx

(j)
k

δk,j

)
= (cTk − πT

1 Bk)x(j)
k − π

(k)
2 δk,j

Assuming the sub-problem to be bounded, the most attractive bfs (basic feasible
solution) xk to enter the master problem is found by maximizing the reduced cost
giving the following LP:

min
xk

σk = (cTk − πT
1 Bk)xk − π(k)

2

Bkxx = bk

xk ≥ 0

(15)

The operation to find these reduced costs is often called Pricing. If σ∗k < 0 we can
introduce the a new column λk,j to the master, with a cost coefficient of cTk x

∗
k.

A basic Dantzig-Wolfe decomposition algorithm can now be formulated:

Dantzig-Wolfe decomposition algorithm.
{initialization}
Choose initial subsets of variables.
while true do

1The reduced cost of a variable xj is

(13) σj = cj − πTAj

where Aj is the column of A corresponding to variable xj , and π are the duals.
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{Master problem}
Solve the restricted master problem.
π1 := duals of coupling constraints
π

(k)
2 := duals of the kth convexity constraint
{Sub problems}
for k=1,. . . ,K do

Plug π1 and π
(k)
2 into sub-problem k

Solve sub-problem k
if σ∗k < 0 then

Add proposal x∗k to the restricted master
end if

end for
if No proposals generated then

Stop: optimal
end if

end while

5. Initialization

We did not pay attention to the initialization of the decomposition.
The first thing we can do is solve each sub-problem:

min cTk xk

Akxk = bk

xk ≥ 0
(16)

If any of the subproblems is infeasible, the original problem is infeasible. Otherwise,
we can use the optimal values x∗k (or the unbounded rays) to generate an initial set
of proposals.

6. Phase I/II algorithm

The initial proposals may violate the coupling constraints. We can formulate
a Phase I problem by introducing artificial variables and minimizing those. The
use of artificial variables is explained in any textbook on Linear Programming (e.g.
[1, 14]). It is noted that the reduced cost for a Phase I problem are slightly different
from the Phase II problem.

As an example consider that the coupling constraints are

(17)
∑

j

xj ≤ b

We can add an artificial variable xa ≥ 0 as follows:

(18)
∑

j

xj − xa ≤ b

The phase I objective will be:

(19) minxa

The reduced cost of a variable xj is now as in equation (14) but with cTk = 0.
It is noted that it is important to remove artificials once a phase II starts. We

do this in the example code by fixing the artificial variables to zero.
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7. Example: multi-commodity network flow

The multi-commodity network flow (MCNF) problem can be stated as:

min
∑
k∈K

∑
(i,j)∈A

cki,jx
k
i,j∑

(i,j)∈A

xk
i,j −

∑
(j,i)∈A

xk
j,i = bkj∑

k∈K

xk
i,j ≤ ui,j

xk
i,j ≥ 0

(20)

This is sometimes called the node-arc formulation.
Dantzig-Wolfe decomposition is a well-known solution strategy for this type of

problems. For each commodity a subproblem is created.
We consider here a multi-commodity transportation problem:

min
∑
k∈K

∑
(i,j)

cki,jx
k
i,j∑

j

xk
i,j = supplyk

i∑
i

xk
i,j = demandk

j∑
k∈K

xk
i,j ≤ ui,j

xk
i,j ≥ 0

(21)

with data from [4]. A similar Dantzig-Wolfe decomposition algorithm written in
AMPL can be found in [3].

Model dw.gms. 2

$ontext

Dantzig-Wolfe Decomposition with GAMS

Reference:
http://www.gams.com/~erwin/dw/dw.pdf

Erwin Kalvelagen, April 2003

$offtext

sets
i ’origins’ /GARY, CLEV, PITT /
j ’destinations’ /FRA, DET, LAN, WIN, STL, FRE, LAF /
p ’products’ /bands, coils, plate/

;

table supply(p,i)
GARY CLEV PITT

bands 400 700 800
coils 800 1600 1800
plate 200 300 300

;

2http://www.amsterdamoptimization.com/models/dw/dw.gms

http://www.amsterdamoptimization.com/models/dw/dw.gms
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table demand(p,j)
FRA DET LAN WIN STL FRE LAF

bands 300 300 100 75 650 225 250
coils 500 750 400 250 950 850 500
plate 100 100 0 50 200 100 250

;

parameter limit(i,j);
limit(i,j) = 625;

table cost(p,i,j) ’unit cost’
FRA DET LAN WIN STL FRE LAF

BANDS.GARY 30 10 8 10 11 71 6
BANDS.CLEV 22 7 10 7 21 82 13
BANDS.PITT 19 11 12 10 25 83 15

COILS.GARY 39 14 11 14 16 82 8
COILS.CLEV 27 9 12 9 26 95 17
COILS.PITT 24 14 17 13 28 99 20

PLATE.GARY 41 15 12 16 17 86 8
PLATE.CLEV 29 9 13 9 28 99 18
PLATE.PITT 26 14 17 13 31 104 20

;

*-----------------------------------------------------------------------
* direct LP formulation
*-----------------------------------------------------------------------

positive variable
x(i,j,p) ’shipments’

;
variable

z ’objective variable’
;

equations
obj
supplyc(i,p)
demandc(j,p)
limitc(i,j)

;

obj.. z =e= sum((i,j,p), cost(p,i,j)*x(i,j,p));

supplyc(i,p).. sum(j, x(i,j,p)) =e= supply(p,i);

demandc(j,p).. sum(i, x(i,j,p)) =e= demand(p,j);

limitc(i,j).. sum(p, x(i,j,p)) =l= limit(i,j);

model m/all/;
solve m minimizing z using lp;

*-----------------------------------------------------------------------
* subproblems
*-----------------------------------------------------------------------

positive variables xsub(i,j);
variables zsub;

parameters
s(i) ’supply’
d(j) ’demand’
c(i,j) ’cost coefficients’
pi1(i,j) ’dual of limit’
pi2(p) ’dual of convexity constraint’
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pi2p
;

equations
supply_sub(i) ’supply equation for single product’
demand_sub(j) ’demand equation for single product’
rc1_sub ’phase 1 objective’
rc2_sub ’phase 2 objective’

;

supply_sub(i).. sum(j, xsub(i,j)) =e= s(i);
demand_sub(j).. sum(i, xsub(i,j)) =e= d(j);
rc1_sub.. zsub =e= sum((i,j), -pi1(i,j)*xsub(i,j)) - pi2p;
rc2_sub.. zsub =e= sum((i,j), (c(i,j)-pi1(i,j))*xsub(i,j)) - pi2p;

model sub1 ’phase 1 subproblem’ /supply_sub, demand_sub, rc1_sub/;
model sub2 ’phase 2 subproblem’ /supply_sub, demand_sub, rc2_sub/;

*-----------------------------------------------------------------------
* master problem
*-----------------------------------------------------------------------

set k ’proposal count’ /proposal1*proposal1000/;
set pk(p,k);
pk(p,k) = no;

parameter proposal(i,j,p,k);
parameter proposalcost(p,k);
proposal(i,j,p,k) = 0;
proposalcost(p,k) = 0;

positive variables
lambda(p,k)
excess ’artificial variable’

;
variable zmaster;

equations
obj1_master ’phase 1 objective’
obj2_master ’phase 2 objective’
limit_master(i,j)
convex_master

;

obj1_master.. zmaster =e= excess;
obj2_master.. zmaster =e= sum(pk, proposalcost(pk)*lambda(pk));

limit_master(i,j)..
sum(pk, proposal(i,j,pk)*lambda(pk)) =l= limit(i,j) + excess;

convex_master(p).. sum(pk(p,k), lambda(p,k)) =e= 1;

model master1 ’phase 1 master’ /obj1_master, limit_master, convex_master/;
model master2 ’phase 2 master’ /obj2_master, limit_master, convex_master/;

*-----------------------------------------------------------------------
* options to reduce solver output
*-----------------------------------------------------------------------

option limrow=0;
option limcol=0;

master1.solprint = 2;
master2.solprint = 2;

sub1.solprint = 2;
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sub2.solprint = 2;

*-----------------------------------------------------------------------
* options to speed up solver execution
*-----------------------------------------------------------------------

master1.solvelink = 2;
master2.solvelink = 2;
sub1.solvelink = 2;
sub2.solvelink = 2;

*-----------------------------------------------------------------------
* DANTZIG-WOLFE INITIALIZATION PHASE
* test subproblems for feasibility
* create initial set of proposals
*-----------------------------------------------------------------------

display "-----------------------------------------------------------------",
"INITIALIZATION PHASE",
"-----------------------------------------------------------------";

set kk(k) ’current proposal’;
kk(’proposal1’) = yes;

loop(p,

*
* solve subproblem, check feasibility
*

c(i,j) = cost(p,i,j);
s(i) = supply(p,i);
d(j) = demand(p,j);
pi1(i,j) = 0;
pi2p = 0;
solve sub2 using lp minimizing zsub;
abort$(sub2.modelstat = 4) "SUBPROBLEM IS INFEASIBLE: ORIGINAL MODEL IS INFEASIBLE";
abort$(sub2.modelstat <> 1) "SUBPROBLEM NOT SOLVED TO OPTIMALITY";

*
* proposal generation
*

proposal(i,j,p,kk) = xsub.l(i,j);
proposalcost(p,kk) = sum((i,j), c(i,j)*xsub.l(i,j));
pk(p,kk) = yes;
kk(k) = kk(k-1);

);

option proposal:2:2:2;
display proposal;

*-----------------------------------------------------------------------
* DANTZIG-WOLFE ALGORITHM
* while (true) do
* solve restricted master
* solve subproblems
* until no more proposals
*-----------------------------------------------------------------------

set iter ’maximum iterations’ /iter1*iter15/;
scalar done /0/;
scalar count /0/;
scalar phase /1/;
scalar iteration;

loop(iter$(not done),

iteration = ord(iter);
display "-----------------------------------------------------------------",

iteration,
"-----------------------------------------------------------------";
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*
* solve master problem to get duals
*

if (phase=1,
solve master1 minimizing zmaster using lp;
abort$(master1.modelstat <> 1) "MASTERPROBLEM NOT SOLVED TO OPTIMALITY";
if (excess.l < 0.0001,

display "Switching to phase 2";
phase = 2;
excess.fx = 0;

);

);

if (phase=2,
solve master2 minimizing zmaster using lp;
abort$(master2.modelstat <> 1) "MASTERPROBLEM NOT SOLVED TO OPTIMALITY";

);

pi1(i,j) = limit_master.m(i,j);
pi2(p) = convex_master.m(p);

count = 0;
loop(p$(not done),

*
* solve each subproblem
*

c(i,j) = cost(p,i,j);
s(i) = supply(p,i);
d(j) = demand(p,j);
pi2p = pi2(p);

if (phase=1,
solve sub1 using lp minimizing zsub;
abort$(sub1.modelstat = 4) "SUBPROBLEM IS INFEASIBLE: ORIGINAL MODEL IS INFEASIBLE";
abort$(sub1.modelstat <> 1) "SUBPROBLEM NOT SOLVED TO OPTIMALITY";

else
solve sub2 using lp minimizing zsub;
abort$(sub2.modelstat = 4) "SUBPROBLEM IS INFEASIBLE: ORIGINAL MODEL IS INFEASIBLE";
abort$(sub2.modelstat <> 1) "SUBPROBLEM NOT SOLVED TO OPTIMALITY";

);

*
* proposal
*

if (zsub.l < -0.0001,
count = count + 1;
display "new proposal", count,xsub.l;
proposal(i,j,p,kk) = xsub.l(i,j);
proposalcost(p,kk) = sum((i,j), c(i,j)*xsub.l(i,j));
pk(p,kk) = yes;
kk(k) = kk(k-1);

);

);

*
* no new proposals?
*

abort$(count = 0 and phase = 1) "PROBLEM IS INFEASIBLE";
done$(count = 0 and phase = 2) = 1;

);

abort$(not done) "Out of iterations";

*-----------------------------------------------------------------------
* recover solution
*-----------------------------------------------------------------------
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parameter xsol(i,j,p);
xsol(i,j,p) = sum(pk(p,k), proposal(i,j,pk)*lambda.l(pk));
display xsol;

parameter totalcost;
totalcost = sum((i,j,p), cost(p,i,j)*xsol(i,j,p));
display totalcost;

The reported solution is:
---- 317 PARAMETER xsol

bands coils plate

GARY.STL 400.000 64.099 160.901
GARY.FRE 625.000
GARY.LAF 110.901 39.099
CLEV.FRA 264.099 10.901
CLEV.DET 67.906 457.094 100.000
CLEV.LAN 400.000
CLEV.WIN 43.972 169.025 50.000
CLEV.STL 250.000 260.901 39.099
CLEV.FRE 162.003 100.000
CLEV.LAF 74.024 150.976
PITT.FRA 35.901 500.000 89.099
PITT.DET 232.094 292.906
PITT.LAN 100.000
PITT.WIN 31.028 80.975
PITT.STL 625.000
PITT.FRE 225.000 62.997
PITT.LAF 175.976 238.123 210.901

---- 321 PARAMETER totalcost = 199500.000
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