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Unrelated Parallel Machine 
Scheduling with Sequence 
Dependent Set-up Times

Application: scheduling jobs for 
producing colored plastic pellets on 

extruder lines



Plastic Pellet Production

GE Plastics, now SABIC

Carthagena (Spain) Plant

http://nl.wikipedia.org/wiki/Afbeelding:Nurdles_01_gentlemanrook.jpg


Similar Application

• Printing of colored paper

• Color difference determines setup time

– Close colors are cheap

– White → anything is cheap

– Black → anything (except black) is expensive

– Longer cleaning



Example



Decision variables
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If a job i cannot execute on machine k, we impose
xorder(i,j,k)=xorder(j,i,k)=xfirst(i,k)=0



Parallel Machine Scheduling Model
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Machine assignment
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Schedule job once
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Xmach is automatically integer

If xorder(i,j,k)=1 then xmach(i,k)=1



Model (2)
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Completion times:

But this is nonlinear: multiplication of S(i)*xorder(i,j,k)
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Bounds:

Later on in the project this was relaxed to become a soft constraint with penalties.
We use combination of MIN SUM and MIN NUM Deviations (if you don’t know
make it an option).



Linearization

   
 













k kjj

i kji

first

kjkjkj

init

kjkkj

order

kjikjkjiikji

kjkjiikji

order

kjikji

SS

SxPIFS

xMPSS

PSS

MxS

''

,

'

,,,,,,

''

,

,,,,,

'

,,

,,,

'

,,

,,

'

,,

1

Requires additional continuous variables and equations, but we still can use
a MIP solver instead of an MINLP solver.



Objective
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Minimize total transition time:



GAMS/Cplex

• Complex MIP models benefit enormously 
from use of a modeling language
– Quick implementation of ideas

– Allows for rapid implementation of alternative 
formulations and experiments

– Allows for quick implementation of 
heuristics/tricks

– Very difficult to do in normal programming 
language (say C) + solver API
• Code is “carved in stone” too quickly



All Sub-Models Improve existing 
solutions

1. Check: Use schedule in input data
• Fix variables xfirst, xorder, according to the data and solve quickly

2. Line by line model: Improve solution by solving model per 
machine

• Unfix only for within machine (k solves)

3. Big one: Improve solution by solving the complete model
• Unfix all variables (this model is the bottleneck)

4. Clean up: Improve solution by solving model per machine
• Unfix only for within machine (k solves) 

• All steps use the same model, just fix/unfix vars. 
• Let presolver kill unneeded equ’s.
• GAMS generates these models fast enough.



Cplex

• Heavily use of advanced Cplex option: MIPSTART
– Advantage: if a submodel fails, it should not destroy the 

whole run, just not improve the current solution

• Additional polishing step fits nicely in this 
scheme and often produced good 
improvements



Example



Data set 1, 47 jobs

• Fixed model: obj=3723,time=0.1 sec

• Solve for each line, keep rest fixed (optcr=2%)
– Obj=3555, time=0.6 sec

– Obj=3448, time=0.3 sec

– Obj=3448, time=0.3 sec

– Obj=3032, time=0.3 sec

– Obj=3032, time=0.3 sec

– Obj=3032, time=0.3 sec

• Solve complete model: obj=3015, time=3600 sec, 
gap=7.7%

• No improvement afterward



Data set 1, Bounds
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Data set 1,Size of model

MODEL STATISTICS 

 

BLOCKS OF EQUATIONS          14     SINGLE EQUATIONS       16,956 

BLOCKS OF VARIABLES          10     SINGLE VARIABLES       11,448 

NON ZERO ELEMENTS        60,102     DISCRETE VARIABLES      4,092 



Data set 2, 41 jobs

• Fixed model: obj=2867,time=0.1 sec

• Solve for each line, keep rest fixed (optcr=2%)
– Obj=2688, time=0.3 sec

– Obj=2396, time=0.5 sec

– Obj=2396, time=0.2 sec

– Obj=2396, time=0.1 sec

– Obj=2396, time=0.1 sec

• Solve complete model: obj=2207, time=85 sec, 
gap=5%

• No improvement afterward



Data set 2, Bounds

Data set 2
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Data set 2,Size of model

MODEL STATISTICS 

 

BLOCKS OF EQUATIONS          14     SINGLE EQUATIONS        7,178 

BLOCKS OF VARIABLES          10     SINGLE VARIABLES        5,660 

NON ZERO ELEMENTS        26,790     DISCRETE VARIABLES      1,695 



Assumptions

• Proposed schedule is feasible, unscheduled jobs are 
marked

– Initial fixed model and line by line optimization will fail otherwise, 
putting too much burden on integrated model

– We can make the line by line models smarter to deal with 
infeasibilities

• Planning horizon starts with completion time of last 
fixed job

– No fixed jobs within planning horizon

• No idle time between jobs
– Exception: we can start with idle time in case first job cannot start 

immediately because of max earliness
– Formulation allowing idle time everywhere is developed but solves 

slower



Production version (discussion)
• Handle problematic inputs

– Data checks
– Some of them are already in prototype but production system needs more systematic approach
– Provide feedback on nature of problem

– Infeasible schedules (no solution exists)
– Detect and handle
– Possible strategies:

» Extra dummy machine for overflow
» Relax due dates
» …

– Proposed schedule is not correct (e.g. not feasible)
– Try to repair in line-by-line optimization
– Try to repair in integrated model

• Handle failures
– If sub-model fails we should recover

• Line balancing
– Try to minimize number of jobs allocated to line k

– Which line to select to try this (recognize lightly loaded lines)
– How to evaluate
– Can be done afterwards: 

» provide  alternative schedules



Allow downtime for repair
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Completion times:

• Scheduled down time is just another job with fixed completion time S(i)
• Replace =  in above equation to an ≥ to allow for idle time on a machine

Unfortunately, this made models much more difficult to solve



Oracle Integration



A bigger instance



Problems

• Model with scheduled maintenance (pink orders) was 
difficult compared to prototype model

• Problems with bug in GAMS/Cplex link
– Returned sometimes wrong solution

• Much effort to do input checks
– Input would need more redundancy to give better error 

messages

• Some additional constraints were only formulated after 
they saw solutions
– Eg. Keep natural order if not detrimental to overall switch-

over time.
– All feedback was about single line scheduling

• schedulers have good intuition on per line schedule, not on overall 
schedule



Additional Feature

• Some jobs can only be executed on some 
machines

• Sometimes matrix of allowable jobs-machine 
assignments has block-diagonal structure

• I.e. after reordering:

• We can solve smaller
problems if this can be exploited

• Coded this algorithm in GAMS



Of course in practice:



Writing Algorithms

• A system like GAMS will allow you to 
implement “mini” algorithms quickly. This can 
increase the range of models that can be 
solved.

• Sometimes this is very easy in GAMS

• Example: rolling horizon algorithm in power 
planning model  (investment in generators on 
New Zealand grid)



Rolling Horizon

• Split whole model in 
pieces wrt integer 
variables

• But use overlap to 
mitigate end-of-
horizon effects

• Optional: solve big 
one at end (using 
MIPSTART)



sets
subiter 'rolling horizon iteration' 
/iter1*iter5/
relaxed(subiter,yr) /
iter1.(2018*2037)
iter2.(2023*2037)
iter3.(2028*2037)
iter4.(2033*2037)
/
fixed(subiter,yr) /
iter2.(2007*2012)
iter3.(2007*2017)
iter4.(2007*2022)
iter5.(2007*2027)
/
;

* Solve GEM:
gem.optfile=1;
gem.reslim=1000;
gem.optcr=0;
gem.optca=0;

loop(subiter,
GENBLDINT.prior(s,yr) = 1;
loop(relaxed(subiter,yr),

GENBLDINT.prior(s,yr) = INF;
);
loop(fixed(subiter,yr),

GENBLDINT.fx(s,yr) = GENBLDINT.L(s,yr);
);
SOLVE GEM USING MIP MINIMIZING TOTALCOST ;
gem.optfile=2;

);

gem.optfile=3;
gem.reslim=10000;
GENBLDINT.prior(s,yr) = 1;
GENBLDINT.lo(s,yr) = 0;
GENBLDINT.up(s,yr) = 1;
SOLVE GEM USING MIP MINIMIZING TOTALCOST ; 



Also for large difficult NLPs

• Very large convex linearly constrained NLP (spatial land 
allocation model, part of economic analysis): 

• Rows:28792

• Cols:546866

• Nz:2771109

• Nlnz:543391

• They  stopped Conopt with obj= 202.0981 after 9455 
seconds

• Mosek found obj= 101.7951 in 582 seconds but “NEAR 
OPTIMAL” (4 cores)



Mini “SQP”

• Solve QP a few times until convergence 
• min g(x)=f(x0) + ∇ f(x0) (x-x0) + 0.5 (x-x0)T ∇ 2 f(x0) (x-x0)

s.t. Ax=b

MODEL mapprox /LANDTOT, SUBCROP, SUMONE, IRRLIMIT, RDEF5/;
option qcp=mosek;

set iter /1*100/;
parameter objApprox(iter);
scalar done /0/;
loop(iter$(not done),

solve mapprox using qcp minimizing entropy;
objApprox(iter) = entropy.l;   display objApprox;
done$(abs(objApprox(iter)-objApprox(iter-1)) <= 1.0e-5) = 1;

);



Results

model time obj

nlp 582.648 101.7951

qp1 73.003 31.3121

qp2 70.156 27.508

qp3 65.358 27.0025

qp4 64.346 26.8975

qp5 67.953 26.8712

qp6 69.314 26.8353

qp7 70.216 26.7588

qp8 72.137 26.6631

qp9 72.846 26.6035

qp10 94.495 26.5873

qp11 98.648 26.5851

qp12 92.613 26.585

qp13 93.819 26.585

conopt 538.999 26.585

Test with CONOPT is optional (just verifying the
Solution)

Total turnaround of the model went down from 6
hours to 30-40 minutes with much better 
objective value.



New Developments

• Some new solvers are entering the market



Example MS Solver Foundation



Just a bit too large for standard edition


