
Implementation of some practical
scheduling models

Tales from the trenches

Erwin Kalvelagen
erwin@amsterdamoptimization.com

Amsterdam Optimization Modeling Group

http://www.amsterdamoptimization.com/damsquare.html

Unrelated Parallel Machine
Scheduling with Sequence
Dependent Set-up Times

Application: scheduling jobs for
producing colored plastic pellets on

extruder lines

Plastic Pellet Production

GE Plastics, now SABIC

Carthagena (Spain) Plant

http://nl.wikipedia.org/wiki/Afbeelding:Nurdles_01_gentlemanrook.jpg

Similar Application

• Printing of colored paper

• Color difference determines setup time

– Close colors are cheap

– White → anything is cheap

– Black → anything (except black) is expensive

– Longer cleaning

Example

Decision variables






otherwise0

 machine on job beforey immediatel is job if1
,,

kji
xorder

kji






otherwise0

 machine on jobfirst is job if1
,

ki
x first

ki

If a job i cannot execute on machine k, we impose
xorder(i,j,k)=xorder(j,i,k)=xfirst(i,k)=0

Parallel Machine Scheduling Model

10 ,,,,,   mach

kji

order

kji

first

kj

mach

kj xxxx

 
kj

order

kjix
, ,, 1

1, k

mach

kix

Machine assignment

At most one successor

Schedule job once

Machine can start with only 1 job 1, i

first

kix

Proper schedule:
order

kji

mach

ki xx ,,, 

Xmach is automatically integer

If xorder(i,j,k)=1 then xmach(i,k)=1

Model (2)

      
k i

order

kjikikjii

first

kjkj

init

kjkj xPSxPFS ,,,,,,,,

Completion times:

But this is nonlinear: multiplication of S(i)*xorder(i,j,k)

duedate

jj

early

j SSS 

Bounds:

Later on in the project this was relaxed to become a soft constraint with penalties.
We use combination of MIN SUM and MIN NUM Deviations (if you don’t know
make it an option).

Linearization

   
 













k kjj

i kji

first

kjkjkj

init

kjkkj

order

kjikjkjiikji

kjkjiikji

order

kjikji

SS

SxPIFS

xMPSS

PSS

MxS

''

,

'

,,,,,,

''

,

,,,,,

'

,,

,,,

'

,,

,,

'

,,

1

Requires additional continuous variables and equations, but we still can use
a MIP solver instead of an MINLP solver.

Objective

   
kj i

order

kjikji

init

kjkj

init

kj xxIMin
, ,,,,,,,

Minimize total transition time:

GAMS/Cplex

• Complex MIP models benefit enormously
from use of a modeling language
– Quick implementation of ideas

– Allows for rapid implementation of alternative
formulations and experiments

– Allows for quick implementation of
heuristics/tricks

– Very difficult to do in normal programming
language (say C) + solver API
• Code is “carved in stone” too quickly

All Sub-Models Improve existing
solutions

1. Check: Use schedule in input data
• Fix variables xfirst, xorder, according to the data and solve quickly

2. Line by line model: Improve solution by solving model per
machine

• Unfix only for within machine (k solves)

3. Big one: Improve solution by solving the complete model
• Unfix all variables (this model is the bottleneck)

4. Clean up: Improve solution by solving model per machine
• Unfix only for within machine (k solves)

• All steps use the same model, just fix/unfix vars.
• Let presolver kill unneeded equ’s.
• GAMS generates these models fast enough.

Cplex

• Heavily use of advanced Cplex option: MIPSTART
– Advantage: if a submodel fails, it should not destroy the

whole run, just not improve the current solution

• Additional polishing step fits nicely in this
scheme and often produced good
improvements

Example

Data set 1, 47 jobs

• Fixed model: obj=3723,time=0.1 sec

• Solve for each line, keep rest fixed (optcr=2%)
– Obj=3555, time=0.6 sec

– Obj=3448, time=0.3 sec

– Obj=3448, time=0.3 sec

– Obj=3032, time=0.3 sec

– Obj=3032, time=0.3 sec

– Obj=3032, time=0.3 sec

• Solve complete model: obj=3015, time=3600 sec,
gap=7.7%

• No improvement afterward

Data set 1, Bounds

Data set 1

2500

2600

2700

2800

2900

3000

3100

0 500 1000 1500 2000 2500 3000 3500 4000

Seconds

O
b

je
c
ti

v
e
 (

m
in

u
te

s
 t

ra
n

s
it

io
n

 t
im

e
)

 bestFound

 bestBound

Data set 1,Size of model

MODEL STATISTICS

BLOCKS OF EQUATIONS 14 SINGLE EQUATIONS 16,956

BLOCKS OF VARIABLES 10 SINGLE VARIABLES 11,448

NON ZERO ELEMENTS 60,102 DISCRETE VARIABLES 4,092

Data set 2, 41 jobs

• Fixed model: obj=2867,time=0.1 sec

• Solve for each line, keep rest fixed (optcr=2%)
– Obj=2688, time=0.3 sec

– Obj=2396, time=0.5 sec

– Obj=2396, time=0.2 sec

– Obj=2396, time=0.1 sec

– Obj=2396, time=0.1 sec

• Solve complete model: obj=2207, time=85 sec,
gap=5%

• No improvement afterward

Data set 2, Bounds

Data set 2

1950

2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

0 20 40 60 80 100

Seconds

O
b

je
c
ti

v
e
 (

tr
a
n

s
it

io
n

 t
im

e
 m

in
u

te
s
)

 bestFound

 bestBound

Data set 2,Size of model

MODEL STATISTICS

BLOCKS OF EQUATIONS 14 SINGLE EQUATIONS 7,178

BLOCKS OF VARIABLES 10 SINGLE VARIABLES 5,660

NON ZERO ELEMENTS 26,790 DISCRETE VARIABLES 1,695

Assumptions

• Proposed schedule is feasible, unscheduled jobs are
marked

– Initial fixed model and line by line optimization will fail otherwise,
putting too much burden on integrated model

– We can make the line by line models smarter to deal with
infeasibilities

• Planning horizon starts with completion time of last
fixed job

– No fixed jobs within planning horizon

• No idle time between jobs
– Exception: we can start with idle time in case first job cannot start

immediately because of max earliness
– Formulation allowing idle time everywhere is developed but solves

slower

Production version (discussion)
• Handle problematic inputs

– Data checks
– Some of them are already in prototype but production system needs more systematic approach
– Provide feedback on nature of problem

– Infeasible schedules (no solution exists)
– Detect and handle
– Possible strategies:

» Extra dummy machine for overflow
» Relax due dates
» …

– Proposed schedule is not correct (e.g. not feasible)
– Try to repair in line-by-line optimization
– Try to repair in integrated model

• Handle failures
– If sub-model fails we should recover

• Line balancing
– Try to minimize number of jobs allocated to line k

– Which line to select to try this (recognize lightly loaded lines)
– How to evaluate
– Can be done afterwards:

» provide alternative schedules

Allow downtime for repair

      
k i

order

kjikikjii

first

kjkj

init

kjkj xPSxPFS ,,,,,,,,

Completion times:

• Scheduled down time is just another job with fixed completion time S(i)
• Replace = in above equation to an ≥ to allow for idle time on a machine

Unfortunately, this made models much more difficult to solve

Oracle Integration

A bigger instance

Problems

• Model with scheduled maintenance (pink orders) was
difficult compared to prototype model

• Problems with bug in GAMS/Cplex link
– Returned sometimes wrong solution

• Much effort to do input checks
– Input would need more redundancy to give better error

messages

• Some additional constraints were only formulated after
they saw solutions
– Eg. Keep natural order if not detrimental to overall switch-

over time.
– All feedback was about single line scheduling

• schedulers have good intuition on per line schedule, not on overall
schedule

Additional Feature

• Some jobs can only be executed on some
machines

• Sometimes matrix of allowable jobs-machine
assignments has block-diagonal structure

• I.e. after reordering:

• We can solve smaller
problems if this can be exploited

• Coded this algorithm in GAMS

Of course in practice:

Writing Algorithms

• A system like GAMS will allow you to
implement “mini” algorithms quickly. This can
increase the range of models that can be
solved.

• Sometimes this is very easy in GAMS

• Example: rolling horizon algorithm in power
planning model (investment in generators on
New Zealand grid)

Rolling Horizon

• Split whole model in
pieces wrt integer
variables

• But use overlap to
mitigate end-of-
horizon effects

• Optional: solve big
one at end (using
MIPSTART)

sets
subiter 'rolling horizon iteration'
/iter1*iter5/
relaxed(subiter,yr) /
iter1.(2018*2037)
iter2.(2023*2037)
iter3.(2028*2037)
iter4.(2033*2037)
/
fixed(subiter,yr) /
iter2.(2007*2012)
iter3.(2007*2017)
iter4.(2007*2022)
iter5.(2007*2027)
/
;

* Solve GEM:
gem.optfile=1;
gem.reslim=1000;
gem.optcr=0;
gem.optca=0;

loop(subiter,
GENBLDINT.prior(s,yr) = 1;
loop(relaxed(subiter,yr),

GENBLDINT.prior(s,yr) = INF;
);
loop(fixed(subiter,yr),

GENBLDINT.fx(s,yr) = GENBLDINT.L(s,yr);
);
SOLVE GEM USING MIP MINIMIZING TOTALCOST ;
gem.optfile=2;

);

gem.optfile=3;
gem.reslim=10000;
GENBLDINT.prior(s,yr) = 1;
GENBLDINT.lo(s,yr) = 0;
GENBLDINT.up(s,yr) = 1;
SOLVE GEM USING MIP MINIMIZING TOTALCOST ;

Also for large difficult NLPs

• Very large convex linearly constrained NLP (spatial land
allocation model, part of economic analysis):

• Rows:28792

• Cols:546866

• Nz:2771109

• Nlnz:543391

• They stopped Conopt with obj= 202.0981 after 9455
seconds

• Mosek found obj= 101.7951 in 582 seconds but “NEAR
OPTIMAL” (4 cores)

Mini “SQP”

• Solve QP a few times until convergence
• min g(x)=f(x0) + ∇ f(x0) (x-x0) + 0.5 (x-x0)T ∇ 2 f(x0) (x-x0)

s.t. Ax=b

MODEL mapprox /LANDTOT, SUBCROP, SUMONE, IRRLIMIT, RDEF5/;
option qcp=mosek;

set iter /1*100/;
parameter objApprox(iter);
scalar done /0/;
loop(iter$(not done),

solve mapprox using qcp minimizing entropy;
objApprox(iter) = entropy.l; display objApprox;
done$(abs(objApprox(iter)-objApprox(iter-1)) <= 1.0e-5) = 1;

);

Results

model time obj

nlp 582.648 101.7951

qp1 73.003 31.3121

qp2 70.156 27.508

qp3 65.358 27.0025

qp4 64.346 26.8975

qp5 67.953 26.8712

qp6 69.314 26.8353

qp7 70.216 26.7588

qp8 72.137 26.6631

qp9 72.846 26.6035

qp10 94.495 26.5873

qp11 98.648 26.5851

qp12 92.613 26.585

qp13 93.819 26.585

conopt 538.999 26.585

Test with CONOPT is optional (just verifying the
Solution)

Total turnaround of the model went down from 6
hours to 30-40 minutes with much better
objective value.

New Developments

• Some new solvers are entering the market

Example MS Solver Foundation

Just a bit too large for standard edition

