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INTRODUCTION 

The model LANDALOC_feas.gms was provided to me in order to see if this model could be solved efficiently on a 

Linux cluster using parallel processing techniques. 

LINUX 

GAMS and most of its solvers are available both on Windows and Linux. In general performance should be similar. 

The Linux version has no IDE (Integrated Development Environment) and no Excel interface.  

GAMS models are in general portable from Windows to Linux. I.e. a model developed on Windows should run 

without change on a Linux box. Sometimes the names of include files need to be updated: windows uses a 

different way to write directories (e.g. ‘\’ vs ‘/’) and the Linux file system is case sensitive while Windows’ 

filenames are not. 

 PARALLEL PROCESSING 

GAMS by itself is not parallel but some of the solvers are available in parallel versions: 

  Cplex: LP, MIP, QCP 

  Xpress: LP, MIP, QCP 

 Mosek: LP, MIP, QCP, NLP (convex only) 

These solvers use a Shared Memory model. There is no off-the-shelf solver available supporting a Distributed 

Memory model. This means that parallel processing is restricted to multi-cpu and multi-core machines. It is not 

possible to distribute a problem over different machines. 

GAMS has some rudimentary “grid-computing” facilities, but that is aimed at solving many problems in parallel 

instead of running one big model. 

Although parallel processing for MIP models can work very well (with excellent speed-ups), parallel processing for 

LP and NLP is largely restricted to barrier type (interior point) algorithms with modest speed-ups.  

LP MODEL 

The first part is a large LP. The statistics are: 

LP model 
 name: Landfeas 

rows: 35734 

cols: 550336 

nz: 1701683 

 

 



 

 

 This model can be solved quickly by using a state of the art LP solver. Here are some results: 

solver Time obj notes 

conopt  2495.532 11.6806 conopt is an NLP solver, and not very fast for LP's 

minos 919.891 11.6806 EXIT - The objective has not changed in many iterations. 

coincbc 86.485 11.6806 default settings (1 thread) 

cplex 13.926 11.6806 default settings (this is the winner) 

cplex 54.360 11.6806 barrier (4 threads) slower than default (dual simplex) 

mosek 74.389 11.6809 default settings (1 thread) 

mosek 71.011 11.6806 parallel version (4 threads) just slightly faster 

mosek 22.609 11.6806 dual simplex (1 thread) 

xpress 32.630 11.6849 default settings (1 thread) 

xpress 80.033 11.6806 barrier 4 threads 

 

The commercial high-end solvers do a good job on this model. Parallel processing has limited value as in many 

cases the default settings using 1 thread outperform other settings. 

It is noted that for LP’s only the barrier (interior point) method is parallelized. On this model the simplex method 

(serial) is faster. 

 

NLP MODEL 

This is a very large NLP. The statistics are: 

NLP Model: 

name: LandentSN 

rows: 28792 

cols: 546866 

nz: 2771109 

nlnz: 543391 

The NLP solver that was used by IFPRI was Conopt and an option file with 

rtredg = 1.0e-4 

was used. This may cause early termination, before the optimum has been reached. We believe this is actually 

what is happening in our case.  We tried a few other NLP solvers but none of the solvers could find the optimum 

solution quickly. The best result was obtained by Mosek, which reached a “near optimal” solution quickly and then 

terminated.  

solver time obj Notes 

conopt 9455.158 202.0981 Uses rtredg = 1.0e-4, terminates maybe too early 

mosek 582.648 101.7951 4 threads, status=near optimal 



 

 

It is noted that we reformulated the model slightly to be able to run with Mosek. We formed a nonlinear objective 

with linear constraints: 

 

equation rdef3; 

rdef3.. ENTROPY =E= (SUM((i,j)$NONZERO(i,j),ALLOC(i,j)*(LOG([ALLOC(i,j) + 

epsilon]/[REV(i,j) + epsilon]))))/SCALELP ; 

 
MODEL LANDentSN2 /LANDTOT, SUBCROP, SUMONE, IRRLIMIT, RDEF3/; 

 

option nlp=mosek; 

LANDENTSN2.optfile=1; 

SOLVE LANDENTSN2 USING NLP MINIMIZING ENTROPY; 

DERIVATIVE CALCULATION 

It is important to pay attention to the form of the objective. A smaller test model will illustrate this. 

 

 

  Sets 

       i   canning plants   / seattle, san-diego / 

       j   markets          / new-york, chicago, topeka / 

       k   multiplicity     / 1*10000/ 

; 

 

  Parameters 

 

       a(i)  capacity of plant i in cases 

         /    seattle     350 

              san-diego   600  / 

 

       b(j)  demand at market j in cases 

         /    new-york    325 

              chicago     300 

              topeka      275  / ; 

 

  Table d(i,j)  distance in thousands of miles 

                    new-york       chicago      topeka 

      seattle          2.5           1.7          1.8 

      san-diego        2.5           1.8          1.4  ; 

 

  Scalar f  freight in dollars per case per thousand miles  /90/ ; 

 

  Parameter c(i,j)  transport cost in thousands of dollars per case ; 

 

            c(i,j) = f * d(i,j) / 1000 ; 

 

  Variables 

       x(i,j,k)  shipment quantities in cases 

       z       total transportation costs in thousands of dollars ; 

 

  Positive Variable x ; 

 

  Equations 

       cost1        define objective function 

       cost2        define objective function 

       supply(i,k)   observe supply limit at plant i 



 

 

       demand(j,k)   satisfy demand at market j ; 

 

  scalar e /0.000001/; 

 

* IFPRI VERSION   NL + LINEAR 

  cost1 ..        z  =e=  sum((i,j,k), x(i,j,k)*log(x(i,j,k)+e)) - 

                          sum((i,j,k), x(i,j,k)*log(c(i,j)+e)); 

 

* EK VERSION      NL ONLY 

  cost2 ..        z  =e=  sum((i,j,k), 

                          x(i,j,k)*log((x(i,j,k)+e)/(c(i,j)+e))); 

 

  supply(i,k) ..   sum(j, x(i,j,k))  =l=  a(i) ; 

 

  demand(j,k) ..   sum(i, x(i,j,k))  =g=  b(j) ; 

 

option limrow=0; 

option limcol=0;  

 

  Model t1 /cost1,supply,demand/ ; 

  Model t2 /cost2,supply,demand/ ; 

 

  Solve t1 using nlp minimizing z ; 

*  Solve t2 using nlp minimizing z ; 

 

 

 

This is essentially the transport model where we add an extra index to be able to make the model bigger, and 

where we use an entropy objective.  Model t2 solves much faster than model t1. The solver IPOPT demonstrates 

this nicely: 

Model t1 Total CPU secs in IPOPT (w/o function evaluations)   =      6.033 
Total CPU secs in NLP function evaluations           =     33.971 

Model t2 Total CPU secs in IPOPT (w/o function evaluations)   =      5.905 
Total CPU secs in NLP function evaluations           =      0.541 

This shows us that t1 and t2 are very much identical to the solver, but they differ very much with respect to  

function- and derivative evaluation. I suspect that the linear part in objective cost1 is stored separately with an 

inadequate fast lookup. 

For smaller models the derivative calculation does not need attention, but for a model of this size, it is very 

important to make sure function and derivative evaluation is a small fraction of the total solution time. 

CONVEXITY 

The model is suited for Mosek as the objective is convex. This can be seen by inspecting the function  

𝑓 𝑥 = 𝑥 log⁡(𝑥 + 𝑎) 

The second derivatives are: 

𝑑2𝑓

𝑑𝑥2
=

2

𝑥 + 𝑎
−

𝑥

(𝑥 + 𝑎)2
=

𝑥 + 2𝑎

(𝑥 + 𝑎)2
> 0 

for any positive x. This confirms the problem is convex and Mosek is valid choice for solving this problem. 



 

 

IMPROVEMENT BY SUCCESSIVE QP’S 

 In order to further improve the solution we tried to restart from the Mosek solution. This did not give good 

results. Conopt declared the model infeasible, and other solvers did not make much progress. 

In the end we formed a QP (Quadratic Programming Problem) by taking the 2
nd

 order Taylor series approximation 

of x*log(x+e). We then solved a series of QP’s where we replace f(x) by 

𝑓(𝑥) ≈ 𝑓(𝑥0) + ∇𝑓(𝑥0) (𝑥 − 𝑥0) +
∇2𝑓 𝑥0 

2
(𝑥 − 𝑥0)2 

We stop when the objective does not change anymore.  

Mosek only solves convex QP’s, which in this case is not a problem as the QP’s are all convex. 

In GAMS notation: 

equation rdef5 "2nd order taylor approx"; 

 

rdef5.. ENTROPY =E= [SUM(NONZERO(i,j), 

*     f =  ALLOC.l(i,j)*LOG(ALLOC.l(i,j) + epsilon) 

*     f' =  ALLOC.l(i,j)/(ALLOC.l(i,j) + epsilon) + log(ALLOC.l(i,j) + epsilon) 

*     f'' = 2/(ALLOC.l(i,j) + epsilon) - ALLOC.l(i,j)/sqr(ALLOC.l(i,j) + epsilon) 

                      ALLOC.l(i,j)*LOG(ALLOC.l(i,j) + epsilon) 

                      + 

                      [ALLOC.l(i,j)/(ALLOC.l(i,j) + epsilon)  +  log(ALLOC.l(i,j) + 

epsilon)] * (ALLOC(i,j)-ALLOC.L(i,j)) 

                      + 

                      0.5*[2/(ALLOC.l(i,j) + epsilon)  -  

ALLOC.l(i,j)/sqr(ALLOC.l(i,j) + epsilon)] * sqr(ALLOC(i,j)-ALLOC.L(i,j)) 

 

                         ) 

                    - 

                    SUM(NONZERO(i,j),ALLOC(i,j)*LOG(REV(i,j) + epsilon))] /SCALELP; 

 

 

 

MODEL mapprox /LANDTOT, SUBCROP, SUMONE, IRRLIMIT, RDEF5/; 

option qcp=mosek; 

 

set iter /1*100/; 

parameter objApprox(iter); 

scalar done /0/; 

loop(iter$(not done), 

   solve mapprox using qcp minimizing entropy; 

   objApprox(iter) = entropy.l; 

   display objApprox; 

   done$(abs(objApprox(iter)-objApprox(iter-1)) <= 1.0e-5) = 1; 

); 

 

We used parallel Mosek (4 threads) to solve the QP’s. Finally we asked Conopt to improve the solution further. The 

results are: 

model time obj 

nlp 582.648 101.7951 

qp1 73.003 31.3121 



 

 

qp2 70.156 27.508 

qp3 65.358 27.0025 

qp4 64.346 26.8975 

qp5 67.953 26.8712 

qp6 69.314 26.8353 

qp7 70.216 26.7588 

qp8 72.137 26.6631 

qp9 72.846 26.6035 

qp10 94.495 26.5873 

qp11 98.648 26.5851 

qp12 92.613 26.585 

qp13 93.819 26.585 

conopt 538.999 26.585 

If we were less conservative we could have terminated a little bit earlier, as the graph of the objective values 

illustrates. 

 

 

 

 

MOSEK CAVEATS 

In the above I have used Mosek as it outperformed other solvers for this model. There are however a few quality 

issues with this solver itself and the GAMS link. Before purchasing Mosek you may want to be aware of these 

issues. Here is a short list of known problems: 
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CONVEXITY 

Mosek can only handle convex problems. It may or may not give a reasonable error message if your model is not 

convex. Sometimes the message is very misleading or incomprehensible. The developers claim it is the modelers 

task to make sure the model is convex. 

MOSEK MIQCP ISSUE 

This is a trivial MIQCP: 

variable z; 

binary variable x; 

equation e; 

e.. z =e= sqr(x); 

model m/e/; 

solve m minimizing z using miqcp; 

Embarrassingly, Mosek cannot solve this. The log file mentions 

Return code - 1050  [MSK_RES_ERR_UNKNOWN] 

The GAMS link is not perfect either. It shows: 

**** SOLVER STATUS     1 NORMAL COMPLETION          

**** MODEL STATUS      14 NO SOLUTION RETURNED      

**** OBJECTIVE VALUE                0.0000 

This is a strange combination and no further explanation is given. 

GAMS/MOSEK ERROR REPORTING 1 

The listing file does not give any explanation in case something goes wrong. The previous section has an example.  

Another example is how the NLP solution is presented: 

               S O L V E      S U M M A R Y 

 

     MODEL   LANDentSN2          OBJECTIVE  ENTROPY 

     TYPE    NLP                 DIRECTION  MINIMIZE 

     SOLVER  MOSEK               FROM LINE  249751 

 

**** SOLVER STATUS     4 TERMINATED BY SOLVER       

**** MODEL STATUS      7 INTERMEDIATE NONOPTIMAL    

**** OBJECTIVE VALUE              101.7951 

 

 RESOURCE USAGE, LIMIT        593.428    900000.000 

 ITERATION COUNT, LIMIT         0        900000 

 EVALUATION ERRORS              0             0 

 

 MOSEK Link       Aug  1, 2008 22.8.1 WEX 5438.6015 WEI x86_64/MS Windows 

 

 M O S E K       version 5.0.0.90 (Build date: Jun  6 2008 14:57:22) 

 Copyright (C)   MOSEK ApS, Fruebjergvej 3, Box 16 

                 DK-2100 Copenhagen, Denmark 

                 http://www.mosek.com 

 



 

 

Again: no explanation is provided in the listing file why Mosek stopped. Sometimes you can decipher something 

from the log file (unfortunately on Linux this is the screen, so it may have disappeared).  

GAMS/MOSEK ERROR REPORTING 2 

The log file presents cryptic error messages like: 

Return code - 1500 [MSK_RES_ERR_INV_PROBLEM]. 

One would expect such codes to be translated in somewhat readable English. Currently you have to search the 

manual for a short explanation of these error codes. 

GAMS/MOSEK ERROR REPORTING 3 

In some cases unusual or contradictory error returns are presented. Here is an example: 

**** SOLVER STATUS 8 USER INTERRUPT 

**** MODEL STATUS 1 OPTIMAL 

MOSEK INFEASIBILITY REPORTING 

Mosek reports infeasibilities in a non-standard way. See the documentation for some notes. 

MOSEK DOCUMENTATION 

The documentation is not always clear. For instance the first parameter discussed in section 5 may lead you to 

believe it can solve non-convex problems using MSK_IPAR_OPTIMIZER=5 which is not the case. 

CONCLUSION 

The LP part of the model can be solved with any good LP solver very efficiently.  

The NLP part of the model is very complicated. It is both very large and numerically challenging. The most efficient 

approach was using Mosek to solve the NLP and then use a series of QP’s to improve the solution. The total 

solution time is 30-40 minutes. 


