

Amsterdam Optimization Modeling Group LLC

Notes on the IFPRI
Spatial Production
Allocation NLP Model

This document describes some experiments with the Spatial Production Allocation NLP
model LANDALOC_feas.gms.

THIS WORK WAS PERFORMED UNDER A CONTRACT BY GAMS DEVELOPMENT CORP.,
WASHINGTON DC.

Erwin
11/14/2008

http://www.amsterdamoptimization.com/damsquare.html

INTRODUCTION

The model LANDALOC_feas.gms was provided to me in order to see if this model could be solved efficiently on a

Linux cluster using parallel processing techniques.

LINUX

GAMS and most of its solvers are available both on Windows and Linux. In general performance should be similar.

The Linux version has no IDE (Integrated Development Environment) and no Excel interface.

GAMS models are in general portable from Windows to Linux. I.e. a model developed on Windows should run

without change on a Linux box. Sometimes the names of include files need to be updated: windows uses a

different way to write directories (e.g. ‘\’ vs ‘/’) and the Linux file system is case sensitive while Windows’

filenames are not.

 PARALLEL PROCESSING

GAMS by itself is not parallel but some of the solvers are available in parallel versions:

 Cplex: LP, MIP, QCP

 Xpress: LP, MIP, QCP

 Mosek: LP, MIP, QCP, NLP (convex only)

These solvers use a Shared Memory model. There is no off-the-shelf solver available supporting a Distributed

Memory model. This means that parallel processing is restricted to multi-cpu and multi-core machines. It is not

possible to distribute a problem over different machines.

GAMS has some rudimentary “grid-computing” facilities, but that is aimed at solving many problems in parallel

instead of running one big model.

Although parallel processing for MIP models can work very well (with excellent speed-ups), parallel processing for

LP and NLP is largely restricted to barrier type (interior point) algorithms with modest speed-ups.

LP MODEL

The first part is a large LP. The statistics are:

LP model
 name: Landfeas

rows: 35734

cols: 550336

nz: 1701683

 This model can be solved quickly by using a state of the art LP solver. Here are some results:

solver Time obj notes

conopt 2495.532 11.6806 conopt is an NLP solver, and not very fast for LP's

minos 919.891 11.6806 EXIT - The objective has not changed in many iterations.

coincbc 86.485 11.6806 default settings (1 thread)

cplex 13.926 11.6806 default settings (this is the winner)

cplex 54.360 11.6806 barrier (4 threads) slower than default (dual simplex)

mosek 74.389 11.6809 default settings (1 thread)

mosek 71.011 11.6806 parallel version (4 threads) just slightly faster

mosek 22.609 11.6806 dual simplex (1 thread)

xpress 32.630 11.6849 default settings (1 thread)

xpress 80.033 11.6806 barrier 4 threads

The commercial high-end solvers do a good job on this model. Parallel processing has limited value as in many

cases the default settings using 1 thread outperform other settings.

It is noted that for LP’s only the barrier (interior point) method is parallelized. On this model the simplex method

(serial) is faster.

NLP MODEL

This is a very large NLP. The statistics are:

NLP Model:

name: LandentSN

rows: 28792

cols: 546866

nz: 2771109

nlnz: 543391

The NLP solver that was used by IFPRI was Conopt and an option file with

rtredg = 1.0e-4

was used. This may cause early termination, before the optimum has been reached. We believe this is actually

what is happening in our case. We tried a few other NLP solvers but none of the solvers could find the optimum

solution quickly. The best result was obtained by Mosek, which reached a “near optimal” solution quickly and then

terminated.

solver time obj Notes

conopt 9455.158 202.0981 Uses rtredg = 1.0e-4, terminates maybe too early

mosek 582.648 101.7951 4 threads, status=near optimal

It is noted that we reformulated the model slightly to be able to run with Mosek. We formed a nonlinear objective

with linear constraints:

equation rdef3;

rdef3.. ENTROPY =E= (SUM((i,j)$NONZERO(i,j),ALLOC(i,j)*(LOG([ALLOC(i,j) +

epsilon]/[REV(i,j) + epsilon]))))/SCALELP ;

MODEL LANDentSN2 /LANDTOT, SUBCROP, SUMONE, IRRLIMIT, RDEF3/;

option nlp=mosek;

LANDENTSN2.optfile=1;

SOLVE LANDENTSN2 USING NLP MINIMIZING ENTROPY;

DERIVATIVE CALCULATION

It is important to pay attention to the form of the objective. A smaller test model will illustrate this.

 Sets

 i canning plants / seattle, san-diego /

 j markets / new-york, chicago, topeka /

 k multiplicity / 1*10000/

;

 Parameters

 a(i) capacity of plant i in cases

 / seattle 350

 san-diego 600 /

 b(j) demand at market j in cases

 / new-york 325

 chicago 300

 topeka 275 / ;

 Table d(i,j) distance in thousands of miles

 new-york chicago topeka

 seattle 2.5 1.7 1.8

 san-diego 2.5 1.8 1.4 ;

 Scalar f freight in dollars per case per thousand miles /90/ ;

 Parameter c(i,j) transport cost in thousands of dollars per case ;

 c(i,j) = f * d(i,j) / 1000 ;

 Variables

 x(i,j,k) shipment quantities in cases

 z total transportation costs in thousands of dollars ;

 Positive Variable x ;

 Equations

 cost1 define objective function

 cost2 define objective function

 supply(i,k) observe supply limit at plant i

 demand(j,k) satisfy demand at market j ;

 scalar e /0.000001/;

* IFPRI VERSION NL + LINEAR

 cost1 .. z =e= sum((i,j,k), x(i,j,k)*log(x(i,j,k)+e)) -

 sum((i,j,k), x(i,j,k)*log(c(i,j)+e));

* EK VERSION NL ONLY

 cost2 .. z =e= sum((i,j,k),

 x(i,j,k)*log((x(i,j,k)+e)/(c(i,j)+e)));

 supply(i,k) .. sum(j, x(i,j,k)) =l= a(i) ;

 demand(j,k) .. sum(i, x(i,j,k)) =g= b(j) ;

option limrow=0;

option limcol=0;

 Model t1 /cost1,supply,demand/ ;

 Model t2 /cost2,supply,demand/ ;

 Solve t1 using nlp minimizing z ;

* Solve t2 using nlp minimizing z ;

This is essentially the transport model where we add an extra index to be able to make the model bigger, and

where we use an entropy objective. Model t2 solves much faster than model t1. The solver IPOPT demonstrates

this nicely:

Model t1 Total CPU secs in IPOPT (w/o function evaluations) = 6.033
Total CPU secs in NLP function evaluations = 33.971

Model t2 Total CPU secs in IPOPT (w/o function evaluations) = 5.905
Total CPU secs in NLP function evaluations = 0.541

This shows us that t1 and t2 are very much identical to the solver, but they differ very much with respect to

function- and derivative evaluation. I suspect that the linear part in objective cost1 is stored separately with an

inadequate fast lookup.

For smaller models the derivative calculation does not need attention, but for a model of this size, it is very

important to make sure function and derivative evaluation is a small fraction of the total solution time.

CONVEXITY

The model is suited for Mosek as the objective is convex. This can be seen by inspecting the function

𝑓 𝑥 = 𝑥 log⁡(𝑥 + 𝑎)

The second derivatives are:

𝑑2𝑓

𝑑𝑥2
=

2

𝑥 + 𝑎
−

𝑥

(𝑥 + 𝑎)2
=

𝑥 + 2𝑎

(𝑥 + 𝑎)2
> 0

for any positive x. This confirms the problem is convex and Mosek is valid choice for solving this problem.

IMPROVEMENT BY SUCCESSIVE QP’S

 In order to further improve the solution we tried to restart from the Mosek solution. This did not give good

results. Conopt declared the model infeasible, and other solvers did not make much progress.

In the end we formed a QP (Quadratic Programming Problem) by taking the 2
nd

 order Taylor series approximation

of x*log(x+e). We then solved a series of QP’s where we replace f(x) by

𝑓(𝑥) ≈ 𝑓(𝑥0) + ∇𝑓(𝑥0) (𝑥 − 𝑥0) +
∇2𝑓 𝑥0

2
(𝑥 − 𝑥0)2

We stop when the objective does not change anymore.

Mosek only solves convex QP’s, which in this case is not a problem as the QP’s are all convex.

In GAMS notation:

equation rdef5 "2nd order taylor approx";

rdef5.. ENTROPY =E= [SUM(NONZERO(i,j),

* f = ALLOC.l(i,j)*LOG(ALLOC.l(i,j) + epsilon)

* f' = ALLOC.l(i,j)/(ALLOC.l(i,j) + epsilon) + log(ALLOC.l(i,j) + epsilon)

* f'' = 2/(ALLOC.l(i,j) + epsilon) - ALLOC.l(i,j)/sqr(ALLOC.l(i,j) + epsilon)

 ALLOC.l(i,j)*LOG(ALLOC.l(i,j) + epsilon)

 +

 [ALLOC.l(i,j)/(ALLOC.l(i,j) + epsilon) + log(ALLOC.l(i,j) +

epsilon)] * (ALLOC(i,j)-ALLOC.L(i,j))

 +

 0.5*[2/(ALLOC.l(i,j) + epsilon) -

ALLOC.l(i,j)/sqr(ALLOC.l(i,j) + epsilon)] * sqr(ALLOC(i,j)-ALLOC.L(i,j))

)

 -

 SUM(NONZERO(i,j),ALLOC(i,j)*LOG(REV(i,j) + epsilon))] /SCALELP;

MODEL mapprox /LANDTOT, SUBCROP, SUMONE, IRRLIMIT, RDEF5/;

option qcp=mosek;

set iter /1*100/;

parameter objApprox(iter);

scalar done /0/;

loop(iter$(not done),

 solve mapprox using qcp minimizing entropy;

 objApprox(iter) = entropy.l;

 display objApprox;

 done$(abs(objApprox(iter)-objApprox(iter-1)) <= 1.0e-5) = 1;

);

We used parallel Mosek (4 threads) to solve the QP’s. Finally we asked Conopt to improve the solution further. The

results are:

model time obj

nlp 582.648 101.7951

qp1 73.003 31.3121

qp2 70.156 27.508

qp3 65.358 27.0025

qp4 64.346 26.8975

qp5 67.953 26.8712

qp6 69.314 26.8353

qp7 70.216 26.7588

qp8 72.137 26.6631

qp9 72.846 26.6035

qp10 94.495 26.5873

qp11 98.648 26.5851

qp12 92.613 26.585

qp13 93.819 26.585

conopt 538.999 26.585

If we were less conservative we could have terminated a little bit earlier, as the graph of the objective values

illustrates.

MOSEK CAVEATS

In the above I have used Mosek as it outperformed other solvers for this model. There are however a few quality

issues with this solver itself and the GAMS link. Before purchasing Mosek you may want to be aware of these

issues. Here is a short list of known problems:

0

20

40

60

80

100

120

CONVEXITY

Mosek can only handle convex problems. It may or may not give a reasonable error message if your model is not

convex. Sometimes the message is very misleading or incomprehensible. The developers claim it is the modelers

task to make sure the model is convex.

MOSEK MIQCP ISSUE

This is a trivial MIQCP:

variable z;

binary variable x;

equation e;

e.. z =e= sqr(x);

model m/e/;

solve m minimizing z using miqcp;

Embarrassingly, Mosek cannot solve this. The log file mentions

Return code - 1050 [MSK_RES_ERR_UNKNOWN]

The GAMS link is not perfect either. It shows:

**** SOLVER STATUS 1 NORMAL COMPLETION

**** MODEL STATUS 14 NO SOLUTION RETURNED

**** OBJECTIVE VALUE 0.0000

This is a strange combination and no further explanation is given.

GAMS/MOSEK ERROR REPORTING 1

The listing file does not give any explanation in case something goes wrong. The previous section has an example.

Another example is how the NLP solution is presented:

 S O L V E S U M M A R Y

 MODEL LANDentSN2 OBJECTIVE ENTROPY

 TYPE NLP DIRECTION MINIMIZE

 SOLVER MOSEK FROM LINE 249751

**** SOLVER STATUS 4 TERMINATED BY SOLVER

**** MODEL STATUS 7 INTERMEDIATE NONOPTIMAL

**** OBJECTIVE VALUE 101.7951

 RESOURCE USAGE, LIMIT 593.428 900000.000

 ITERATION COUNT, LIMIT 0 900000

 EVALUATION ERRORS 0 0

 MOSEK Link Aug 1, 2008 22.8.1 WEX 5438.6015 WEI x86_64/MS Windows

 M O S E K version 5.0.0.90 (Build date: Jun 6 2008 14:57:22)

 Copyright (C) MOSEK ApS, Fruebjergvej 3, Box 16

 DK-2100 Copenhagen, Denmark

 http://www.mosek.com

Again: no explanation is provided in the listing file why Mosek stopped. Sometimes you can decipher something

from the log file (unfortunately on Linux this is the screen, so it may have disappeared).

GAMS/MOSEK ERROR REPORTING 2

The log file presents cryptic error messages like:

Return code - 1500 [MSK_RES_ERR_INV_PROBLEM].

One would expect such codes to be translated in somewhat readable English. Currently you have to search the

manual for a short explanation of these error codes.

GAMS/MOSEK ERROR REPORTING 3

In some cases unusual or contradictory error returns are presented. Here is an example:

**** SOLVER STATUS 8 USER INTERRUPT

**** MODEL STATUS 1 OPTIMAL

MOSEK INFEASIBILITY REPORTING

Mosek reports infeasibilities in a non-standard way. See the documentation for some notes.

MOSEK DOCUMENTATION

The documentation is not always clear. For instance the first parameter discussed in section 5 may lead you to

believe it can solve non-convex problems using MSK_IPAR_OPTIMIZER=5 which is not the case.

CONCLUSION

The LP part of the model can be solved with any good LP solver very efficiently.

The NLP part of the model is very complicated. It is both very large and numerically challenging. The most efficient

approach was using Mosek to solve the NLP and then use a series of QP’s to improve the solution. The total

solution time is 30-40 minutes.

